Technical Memorandum Number 828

The JRP with Multiple Replenishment Sources

by

Serge Karalli
College of Business Administration, California State University
karallis@csus.edu

A. Dale Flowers
Weatherhead School of Management, Case Western Reserve University,
dale.flowers@case.edu,

September 2010

Department of Operations
Weatherhead School of Management
Case Western Reserve University
330 Peter B. Lewis Building
Cleveland, Ohio 44106
The JRP with Multiple Replenishment Sources and Fill Rates

Serge Karalli
College of Business Administration
California State University, Sacramento, 6000 J Street, Sacramento, CA 95819
karallis@csus.edu

A. Dale Flowers
Department of Operations, Weatherhead School of Management
Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
dale.flowers@case.edu

September 13, 2010

Keywords

Subject classification: 334 multiproduct lot sizing, MFELSP-SS: feasibility issues
Inventory/replenishment: Approximations/heuristics, Multi-item, Multi-family
Abstract

This paper extends the Joint Replenishment Problem (JRP) to a stochastic demand environment where the demand service is measured by fill rates. This paper also considers replenishment from multiple locations. The relevant costs include family order costs, item order costs, and inventory holding costs for both cycle and safety stocks. Safety stock costs are explicitly considered in the formulation, as their holding costs vary nontrivially with the model’s decision variables.

A family is a subset of the items that share a common family order cost. Each item within the family may have its own order cost. The families form a partition of the set of items replenished from the same supplier. The safety stock level for any item is a function of the time interval between replenishments for the item, the fill rate specified, and the variance of its demand.

An efficient solution procedure is developed for this model. Properties of the non-convex feasible space are identified and used in the solution approach. The solution to the mathematical model is comprised of the basic period length, the family multipliers, and the item multipliers that give the lowest total cost of placing orders and carrying inventory. The family multipliers and items multipliers are restricted to integer-powers-of-two.
1 Introduction

In this paper, the joint replenishment problem (JRP) with safety stocks held for a fill rate criterion is studied. The fill rate criterion requires a percentage of demand for each item to be met. Our problem environment is further characterized by:

- Time-stationary, normally distributed demand with known parameters
- Multiple product families, each family representing a supplier location
- Minor order cost for each product within the family
- Replenishment to stock, with safety stock required to ensure a minimum fill-rate requirement
- Relevant costs include:
 - Major order costs
 - Minor order costs
 - Cycle inventory holding costs
 - Safety stock inventory holding costs

Fill rates are popular in industry as a measure of customer service. The behavior of fill-rate safety stock levels with respect to the length of time for which it is held differs from safety stock for the service level criterion. Whereas the latter increases with respect to time, required safety stock levels for fill rates can increase, decrease or increase and then decrease with time in an interval of interest.

In §2, we examine the relevant JRP literature to date and justify our contribution in that context. We explore the behavioral differences between the fill-rate safety stock and service-level safety stock in §3 with a discussion of the computational relationship between the service level and the fill rate criteria. We introduce the The Multi-Family JRP with Fill-Rate Safety Stock in §4. In §5, we derive the cost function for the single item problem. We formulate the problem and discuss its solution properties. In §6, we formulate the single
Family problem; we derive a continuous relaxation, which will serve as a step in the solution procedure and as a lower bound. The multi-family algorithm for fill rates is developed in §7. Examples are given in §8 followed by an evaluation of the algorithms in §9. We provide concluding remarks in §10.

2 Literature review

The literature review is summarized in Table 1. Goyal [1], Andres and Emmons [2], Joneja [3], Federgruen and Zheng [4], Fung and Ma [5], and Viswanathan [6] are examples of Deterministic JRP research, with the latter most offering an optimal algorithm. Robinson and Lawrence [7] add a production capacity constraint to their JRP model.

A more recent stream of research, e.g. Eynan and Kropp [8] and Tagaras and Vlachos [9], extends the JRP to stochastic demand environments with safety stock held to hedge against stock outs. These efforts represent attempts to solve models that more closely resemble real-world conditions. A more popular service measure in industry, particularly in retail environments, is the fill rate measure of service, which was addressed by Rao [10] for the single product case. The single product case, though not straightforward, is much easier to solve than situations which require the coordination of multiple products and multiple families. The study of fill-rate safety stock in a multi-family, multi-family is required in order to manage inventory policies and associated costs as they actually occur in practice.

The contribution of this paper is the last entry in Table 1. This study will contribute to the JRP literature by considering the effect of fill-rate safety stock costs on the joint ordering decisions that faces the management of a firm that replenishes from multiple locations. The environment considered is that of multiple items partitioned into multiple families. The manager’s challenge is to
balance competing costs in order to achieve a low cost replenishment solution. The family and item fixed costs compete against the variable costs of holding working stock and safety stock inventories. These costs make up the relevant costs of the problem, the sum of which will be referred to as the total cost. Even though this problem is intended to address multiple families, it is also applicable to the single family and the single item problems.
Table 1: Contributions of the Literature and this Paper

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Replenishment Type</th>
<th>Safety Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robinson and Lawrence</td>
<td>2004</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>Rao</td>
<td>2003</td>
<td>SI</td>
<td>FR</td>
</tr>
<tr>
<td>Tagaras and Vlachos</td>
<td>2002</td>
<td>SF</td>
<td>SL</td>
</tr>
<tr>
<td>Viswanathan</td>
<td>2002</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>Fung and Ma</td>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eynan and Kropp</td>
<td>1997</td>
<td>SF</td>
<td>SL</td>
</tr>
<tr>
<td>Federgruen and Zheng</td>
<td>1992</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>Joneja</td>
<td>1989</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>This Paper</td>
<td></td>
<td>MF, SF, SI</td>
<td>FR</td>
</tr>
</tbody>
</table>

Legend:
- SI: single-item
- SF: single-family, multi-item
- MF: multi-family, multi-item
- FR: fill rate
- SL: service level
3 Fill-Rate Safety Stock

3.1 The Fill Rate

Consider an item, whose demand is normally distributed with mean d units per period and standard deviation of demand σ units per period, is replenished every t periods, with a replenishment lead-time $L \geq 0$.

When considering the fill rate, one seeks to determine a product’s expected excess demand, which cannot be filled from inventory so that equation (1) below holds, where the LHS, f, is the required fill rate for the item under consideration.

$$f = \frac{q}{q + e}$$

The quantity on hand, q, at the beginning of the inventory cycle is defined in equation (2). The first term of the right hand side of equation (2) is the mean demand between replenishments. The second term of the right hand side of equation (2) is the safety stock required to meet the specified fill rate, f.

$$q = dt + z\sigma \sqrt{L + t}$$

The expected shortage, e, given $z\sigma \sqrt{L + t}$ units of safety stock, is defined in equation (3).

$$e = E(z)\sigma \sqrt{L + t}$$

where, $E(z)$, given in equation (4), is the partial expectation evaluated at z.

$$E(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (x - z) e^{-x^2/2} dx$$

To compute e, first find z in equation (4) below so that equation (1) holds, using the identities in equation (2) and equation (3). Since e is the demand
expected to exceed q, the denominator in equation (1) is the expected demand given q units were in stock.

The partial expectation in equation (4) can be expressed as follows [11]:

$$E(z) = \phi(z) - zF(z)$$

where,

- $\phi(z)$ Standard normal p.d.f. evaluated at z
- $\Phi(z)$ Area under the standard normal curve to the left of z
- $F(z)$ Area under the standard normal curve to the right of z; that is $F(z) = 1 - \Phi(z)$

We combine equation (1), equation (3), equation (2), and equation (5) to yield equation (6), below.

$$[\phi(z) - zF(z)] - \left(1 - f \right) \left(\frac{dt}{\sigma \sqrt{L + t}} + z \right) = 0$$

We can now express t in terms of z as follows in equation (7) below

$$\frac{t}{\sqrt{L + t}} = \left[\left(\frac{f}{1 - f} \right) E(z) - z \right] \left(\frac{\sigma}{d} \right)$$

Property 1. An increase (decrease) in t requires a decrease (increase) in z to maintain the identity in equation (1).

Proof. Using equation (1) and equation (3), we can write equation (8) below.

$$\frac{dt + z\sigma \sqrt{L + t}}{dt + z\sigma \sqrt{L + t} + E(z)\sigma \sqrt{L + t}} = f$$

Because $\frac{\partial E(z)}{\partial z} < 0$ [11], maintaining the identity in equation (8) requires a reduction in the value of z to raise the value of the denominator of the LHS of
equation (8) when \(t \), in the numerator, increases.

The relationship of \(z \) to \(t \) is illustrated in Figure 1. The demand line is the demand rate multiplied by the cycle time, \(dt \). When \(z < 0 \), the order quantity, \(q \), required to satisfy \(f \) is smaller than the mean demand over the time until the next replenishment. To satisfy the identity in equation (6), the value of \(z \) is zero when

\[
\frac{t}{\sqrt{L + t}} = \frac{1}{\sqrt{2\pi}} \left(\frac{\sigma}{d} \right) \left(\frac{f}{1-f} \right).
\] (9)

This can be seen in Figure Figure 1, where at \(z = 0 \), the total stock curve, \(q \), intersects with the demand line, \(dt \), and then falls below \(dt \), when \(z < 0 \).
Figure 1: The relationship of z to t that satisfies the identity in equation (6), when d, σ, and f are held fixed. In this example, $L = 0$, $d = 1$, $\sigma = 0.4$, and $f = 0.80$; when $t = 0.4074$, $z = 0$. The horizontal line crossing the origin is added for emphasis.
3.2 Service Level vs. Fill Rate Safety Stock Inventories

Consider a product with a normally distributed daily demand with a mean of 1000 units and a standard deviation of 400 units. If safety stock were held for a period up to, say, 30 days to hedge against stock outs, the level would vary with time according to the expression $400z\sqrt{t}$ where z is the standard normal variate corresponding to one minus the probability that a stock out will occur in the time interval $t \in (0, 30)$. The level of service level safety stock required to cover a specific length of time in which we wish to hedge against a stock out due to unexpected demand is displayed in Figure 2. Each curve in Figure 2 represents a different service level (one minus the probability of incurring a stock out), specifically 95%, 97%, 99%, and 99.99%.
Figure 2: Requirements of service level safety stock as a function of time for an item with $d = 1000$ units per period, and $\sigma = 400$ units per period. Because z is constant for any given service level, the safety stock function is always increasing in t.
The graph for safety stock levels for 95%, 97%, 99% and 99.99% fill rate requirements is in Figure 3 and presents a different picture than Figure 2. The curves for the 95% and 97% fill rates first increase, then decrease. The reason for the change in direction is that, unlike service level safety stock, where the standard normal variate is static for each curve, the standard normal variate in fill rates is itself, a decreasing function of t. By inspection of equation (6) above, a change in the period length, t, over which we wish to hedge against unexpected demand, would necessitate a change in z to maintain the equation’s identity.

The value of z can become negative, as is the case for the 95% and 97% fill-rate curves.
Figure 3: Requirements of fill-rate safety stock as a function of time for an item with \(d = 1000 \) units per period, and \(\sigma = 400 \) units per period. Because \(z \) is a decreasing function of \(t \), the safety stock function increases with \(t \) until

\[
t = \left[\left(\frac{\sigma}{d} \right) \left(\frac{f}{1-f} \right) \right]^2 \frac{1}{2\pi}
\]

and decreases thereafter.
3.3 Service Level vs. Fill Rate Safety Factors

The service level safety factor (or the control variate) is constant over all values of \(t \). That is not the case for the fill-rate.

Property 2. (The Fill-Rate Safety Factor) \(\forall f \in (0, 1) \), \(\exists ! z^f (0) \in \left(\frac{f}{1-f} \right) E(z^f (0)) - z^f (0) = 0 \) (see equation (7)).

Proof. That is, when \(z = z^f (0) \), the value of \(t \) is 0. Values of \(z \geq z^f (0) \) imply \(\sqrt{T} \leq 0 \) and are therefore not in the domain of values of \(z \) for \(f \). \(\square \)

Property 2 is illustrated in Figure 4. Property 2 will be useful in the development of an efficient solution algorithm.
Figure 4: Upperbound of the safety factor, z, determined exclusively by the fill rate, f. Safety factor curves for $f = 90\%$ (dotted), 95% (dashed), and 98% (solid) displayed for an item with $d = 1000$ and $\sigma = 400$. When $t = 0$, $z_{90\%} = 0.901$, $z_{95\%} = 1.159$, and $z_{98\%} = 1.485$.
4 The Multi-Family JRP with Fill-Rate Safety Stock

We now present a framework that serves as a generalization of (a) multi-family JRP with fill-rate safety stock (MFJRP-FR), (b) the (single-family) JRP with Fill-Rate Safety Stock (JRP-FR), and (c) the (single-item) EOQ with Fill-Rate Safety Stock.

Problem Environment. The MFJRP-FR is a continuous-time, infinite-horizon extension of the JRP in which a retail firm replenishes its inventory from multiple suppliers. Each supplier represents a family. The retailer needs to coordinate shipment arrivals from all the suppliers with its own resources, such as personnel and dock space.

There are \(n \) families, each identified by a subscript \(i \in \mathbb{N} = 1, \ldots, n \). Each item is identified by a unique family-item pair, \((i, j) \in \mathbb{N} \times \mathbb{N}\), with the subscript \(j \in \mathbb{N} \), denoting the \(j^{th} \) item in family \(i \). The use of \(n \) as both the number of families and the number of items within each family is a notational convenience. When the number \(n \) exceeds the actual number of items in any family, or exceeds the number of families, dummy items and/or families are simply created and the value of zero is assigned to their parameters.

- For each family, there is:
 - a known sequence-independent order cost
 - a known delivery lead-time
- For each item, the demand is:
 - time-stationary
 - normally distributed, with
 - known mean and standard deviation
 - uncorrelated with other items
 - not substitutable with other items
• For each item, there is:
 – a known sequence-independent ordering cost
 – a known cost of storing the item in inventory
 – a specified fill rate

Safety stock is maintained for each item in order to meet the specified fill rates. We further assume items do not have multiple suppliers; that is, every item is unique. The relevant costs include a fixed cost for ordering the item and a holding cost per unit per unit of time for both cycle and safety stocks. The objective is to minimize the total average relevant cost per unit time in a cyclic schedule.

4.1 Notation

Basic Notation

\[\mathbb{W} = \{0, 1, 2, \ldots\}; \text{ the set of non-negative integers} \]
\[\mathbb{P} = \{2^p : p \in \mathbb{W}\}; \text{ the set of integer-powers-of-two} \]

Problem Parameters

\[A_i \quad \text{order cost incurred when one or more items are ordered from } i \in \mathbb{N} \]
\[L_i \quad \text{Delivery lead-time for family } i \in \mathbb{N} \]
\[a_{ij} \quad \text{order cost incurred when item } (i, j) \text{ is ordered} \]
\[d_{ij} \quad \text{demand mean for item } (i, j) \]
\[\sigma_{ij} \quad \text{demand standard deviation for item } (i, j) \]
\[h_{ij} \quad \text{inventory carry cost per unit per unit of time for item } (i, j) \]
\[f_{ij} \quad \text{required fill rate for item } (i, j) \]

Decision Variables

\[z_{ij} \quad \text{safety factor for item } (i, j) \]
\[t_{ij} \quad \text{length of the basic period (BP) for item } (i, j) \]
T length of the basic period (SF and MF problems)

K_i multiplier for family i; $K_i \in \mathbb{P}$

k_{ij} multiplier for item (i, j); $k_{ij} \in \mathbb{P}$

Additional Notation

K n-vector

k $n \times n$-matrix

k_i n^{th} row of k

z $n \times n$-matrix

$c(\cdot)$ cost function evaluated at

$b_{ij} = \frac{1}{2} h_{ij} d_{ij}$

$g_{ij} = \begin{cases} h_{ij} z_{ij} \sigma_{ij} & \text{if } z_{ij} \geq 0 \\ \frac{1}{2} h_{ij} z_{ij} \sigma_{ij} & \text{otherwise} \end{cases}$

$T_i = T K_i$

$T_{ij} = T K_i k_{ij}$

$x_i = T K_i$

$y_{ij} = T K_i k_{ij}$

4.2 Derivation of the Cost function

The problem parameters are known for each family of items and its items. The firm would like to adopt an inventory policy that (a) minimizes the total relevant operating costs (b) is feasible to implement, and (c) complies with its service criteria. The average family order cost per unit time of the item is given in equation (10). The average item order cost per unit time of the item is given in equation (11).

\[
\sum_{i \in \mathbb{N}} \frac{A_i}{T_i} \quad (10)
\]

\[
\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \frac{a_{ij}}{T_{ij}} \quad (11)
\]
The average working stock holding cost per unit time when the BL length is T units and item (i, j) is replenished every $TK_i k_{ij}$ time units, is given in equation (12).

$$\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} b_{ij} T_{ij}$$

(12)

The total average safety stock holding cost per unit time is given in equation (13).

$$\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} g_{ij} \sqrt{L_i + T_{ij}}$$

(13)

When $z_{ij} \geq 0$ the value of g_{ij} in equation (13) is positive (see Additional Notation). It reflects the fact that, on average, this is the quantity that is expected to remain at the end of the cycle t. When $z_{ij} < 0$, $g_{ij} < 0$, the working stock quantity, as defined in equation (12), is less than the expected demand over the cycle T_{ij}. The expectation, then, is for the inventory to be exhausted at the start of the following cycle and the cost of carry is reduced.

The total average holding cost per unit time is the sum of equation (11) and equation (13).

4.3 Problem Formulation

The firm’s objective is to find (T, K, k, z) so as to minimize the total average cost, given in equation (14). To ensure that the safety stock quantities are set to levels that satisfy the required fill rate for each item, we require that the identity in equation (15) be enforced by making it a constraint as shown in equation (18). The constraints in equation (16) and equation (17) require that the family and item multipliers be integer-powers-of-two (IPOT). While a strictly positive value of T is sought, the strict inequality can be written as a
weak one as shown in equation (18) without loss of accuracy.

\[
 e (T, K, k, z) = \sum_{i \in \mathbb{N}} \left(\frac{A_i}{T_i} + \sum_{j \in \mathbb{N}} \frac{a_{ij}}{T_{ij}} + b_{ij} T_{ij} + g_{ij} \sqrt{T_i + T_{ij}} \right) \tag{14}
\]

\[
 f (f_{ij}, d_{ij}, \sigma_{ij}, T_{ij}) = \frac{T_{ij}}{\sqrt{L_i + T_{ij}}} - \left(\frac{\sigma_{ij}}{T} \right) \left[E(z_{ij}) \left(\frac{f_{ij}}{1 - f_{ij}} \right) - z_{ij} \right] = 0 \tag{15}
\]

Problem M. The objective of Problem M is to find \((T, K, k, z)\) so as to

- **Minimize** \(\text{equation (14)}\)
- **Subject to** \(\text{equation (15)}\); \(\forall (i, j) \in \mathbb{N} \times \mathbb{N}\)
 - \(K_i \in \mathbb{P}; \quad \forall j \in \mathbb{N} \tag{16}\)
 - \(K_{ij} \in \mathbb{P}; \quad \forall (i, j) \in \mathbb{N} \times \mathbb{N} \tag{17}\)
 - \(T \geq 0 \tag{18}\)

Karalli and Flowers [12] show that the solution to a problem, whose structure is similar to ours, can always be represented in anchor form (AF). The AF property facilitates the search for a solution to problem F. A solution, \((T^*, K^*, k^*, z^*)\), to the Problem M is in AF if (a) \(0 < t \in \mathbb{R}\); (b) \(\forall i \in \mathbb{N}, K_i \in \mathbb{P}\); (c) \(K^* = (K_1, K_2, \ldots, K_n)\), with \(K_1 = 1 \leq K_1 \leq \cdots \leq K_n\); (d) \(\forall (i, j) \in \mathbb{N} \times \mathbb{N}, k_{ij} \in \mathbb{P} \times \mathbb{P}\); and (e) \(k_i = (k_{i1}, k_{i2}, \ldots, k_{in})\), with \(k_{i1} = 1 \leq k_{i2} \leq \cdots \leq k_{in}\).

4.4 Lower Bound for Problem M

The following continuous relaxation, problem \(M_R\), serves as a lower bound of problem M. In order to relax the IPOT restrictions on the \(K_i\)s and \(k_{ij}\)s, we define \(x_i \equiv TK_i\) and \(y_{ij} \equiv TK_i k_{ij}\). The objective function for problem \(M_R\)
becomes
\[
 c(T, K, k, z) = \sum_{i \in \mathbb{N}} \left(\frac{A_i}{x_i} + \sum_{j \in \mathbb{N}} \frac{a_{ij}}{y_{ij}} + b_{ij}y_{ij} + g_{ij}\sqrt{L_i + y_{ij}} \right)
\]

(19)

Problem M_R. The objective of Problem M_R is to find \((x, y, z)\) so as to

\[
 \text{Minimize} \quad \text{equation (19)}
\]

Subject to \(\text{equation (15)}; \ \forall (i, j) \in \mathbb{N} \times \mathbb{N}
\]

\[
 x_i - y_{ij} \leq 0; \quad \forall i, j \in \mathbb{N}
\]

(20)

\[
 x_i, y_{ij} \geq 0; \quad (21)
\]

5 The Single Item Problem

Solving the single item problem is the departure point for solving the single-item, single-family, and multi-family problems.

Problem S. Find the cycle time, \(y_{ij}^*\), and the safety factor, \(z_{ij}^*\), for the item so as to

\[
 \text{Minimize} \quad C(y_{ij}, z_{ij}) = \frac{a_{ij}}{y_{ij}} + b_{ij} + g_{ij}\sqrt{L_i + y_{ij}}
\]

(22)

Subject to \(\text{subject to} \quad \frac{y_{ij}}{\sqrt{y_{ij} + L_i}} - \left(\frac{a_{ij}}{d_{ij}} \right) E(z_{ij}) \left(\frac{f_{ij}}{1 - f_{ij}} \right) - z_{ij} \right) = 0 \quad (23)
\]

\[
 y_{ij} \geq 0 \quad (24)
\]

Solution to Problem S The steps for solving Problem S are

1. find \(z_0^f\) using the Newton-Raphson Method given in algorithm (1)

2. perform the golden section line search along \(z \in [a = -3, b = z_0^f]\) given in algorithm (2)
For a tolerance of $\epsilon = 0.0001$, algorithm (1) usually requires five to seven iterations to provide an answer. For a tolerance of $l = 0.0001$, algorithm (2) will solve problem S in n iterations, where n is the smallest integer satisfying the inequality in equation (25) [13].

\[
(0.618)^{n-1} \leq \frac{l}{b-a} \tag{25}
\]

For fill-rates of 92% and higher, $n = 24$. Below 92%, $n = 23$.
Algorithm 1 Procedure to find z^f_t using the Newton-Raphson Method

Require:
f, d, σ \{item properties\}
t \{to find z^f_0 set $t = 0$\}

1: Initialize
\(\epsilon \leftarrow 0.0001 \)
\(z_0 \leftarrow 3 \)

2: Function and Its Derivative
\[
f(z) = \left[\left(\frac{f}{1-t} \right) E(z) - z \right] \left(\frac{\sigma}{d} \right) - \frac{t}{\sqrt{L+t}} \]
\[
f'(z) = \left[- \left(\frac{f}{1-t} \right) F(z) - 1 \right] \left(\frac{\sigma}{d} \right) \]

Begin Newton-Raphson Method

3: \(z_1 = z_0 - \frac{f(z_0)}{f'(z_0)} \)

4: while \(|z_1 - z_0| > \epsilon \) do
5: \(z_0 = z_1 \)
6: \(z_1 = z_0 - \frac{f(z_0)}{f'(z_0)} \)
7: end while
8: \(z^f_t(t) = z_1 \)
9: return \(z^f_t(t) \)

End
Algorithm 2 Solution Procedure for the Single Item Problem

1: Initialize
\[\begin{align*}
\beta & \leftarrow \frac{\sqrt{5} - 1}{2} \quad \alpha \leftarrow 1 - \beta \\
\varepsilon & \leftarrow 0.0001 \\
(z_0^a, z_0^b) & \leftarrow (-3, z^f(0))
\end{align*} \]

2: Return Values
\[\begin{align*}
\gamma & \leftarrow \left(\frac{\sigma}{d} \right) \left[E(\gamma^2) \left(\frac{L}{\gamma^2} \right) - z^* \right] \\
c(t^*, z^*) & \leftarrow \frac{h z^* \sigma}{2} + bt^* + g^* \sqrt{L + t^*} \quad \text{where} \quad g^* \left\{ \begin{array}{ll}
& \frac{hz^* \sigma}{2} \quad \text{if} \quad z^* \geq 0 \\
& \frac{1}{2}hz^* \sigma \quad \text{otherwise}
\end{array} \right.
\end{align*} \]

3: \[(z_1^a, z_1^b) = (z_0^a, z_0^b) \]

4: for \(k = 1 \) to 24 do
\[\begin{align*}
\delta_k & \leftarrow z_k^b - z_k^a \\
(\lambda_k, \mu_k) & \leftarrow (z_k^b + \alpha \delta_k, z_k^b + \beta \delta_k) \\
\delta_k & \leftarrow \mu_k - \lambda_k
\end{align*} \]

5: if \(\delta_k \leq \varepsilon \) then
\[\begin{align*}
\text{return} \quad & z^*, t^*, \text{ and } c(t^*, z^*) \quad \text{Using the equations in statement 2} \\
& \{ \text{Exit algorithm} \}
\end{align*} \]

6: else
\[\begin{align*}
t_k^\lambda & \leftarrow \frac{(\gamma_k^2)^2}{2} + \frac{1}{2} \sqrt{\left(\gamma_k^2 \right)^4 + 4 \left(\gamma_k^2 \right)^2 L} \\
t_k^\mu & \leftarrow \frac{(\gamma_k^2)^2}{2} + \frac{1}{2} \sqrt{\left(\gamma_k^2 \right)^4 + 4 \left(\gamma_k^2 \right)^2 L}
\end{align*} \]

\[\begin{align*}
& \text{where} \quad \gamma_k^\lambda \leftarrow \left(\frac{\sigma}{d} \right) \left[E(\lambda^k) \left(\frac{L}{\lambda^k} \right) - \lambda_k \right] \\
& \text{where} \quad \gamma_k^\mu \leftarrow \left(\frac{\sigma}{d} \right) \left[E(\mu^k) \left(\frac{L}{\mu^k} \right) - \mu_k \right]
\end{align*} \]

\[\begin{align*}
c(\lambda_k) & \leftarrow \frac{a}{\tau_k^\lambda} + \frac{1}{2}ht_k^\lambda + g_k^\lambda \sqrt{t_k^\lambda} \\
c(\mu_k) & \leftarrow \frac{a}{\tau_k^\mu} + \frac{1}{2}ht_k^\mu + g_k^\mu \sqrt{t_k^\mu}
\end{align*} \]

\[\begin{align*}
& \text{where} \quad g_k^\lambda \leftarrow \begin{cases} h \lambda_k \sigma & \text{if} \ \lambda_k \geq 0 \\
\frac{1}{2}h \lambda_k \sigma & \text{otherwise}
\end{cases} \\
& \text{where} \quad g_k^\mu \leftarrow \begin{cases} h \mu_k \sigma & \text{if} \ \mu_k \geq 0 \\
\frac{1}{2}h \mu_k \sigma & \text{otherwise}
\end{cases}
\end{align*} \]

7: \[(z_k^a, z_k^b) = \begin{cases} (\lambda_k, z_k^b) & \text{if} \ c(\lambda_k) > c(\mu_k) \\
(z_k^a, \mu_k) & \text{otherwise}
\end{cases} \]

8: end if

9: end for

10: return \quad z^*, t^*, \text{ and } c(t^*, z^*) \quad \text{Using the equations in statement 2} \\
\{ \text{Exit algorithm} \}
6 The Single Family Problem

Problem M_R can be separated into n single family problems, as shown in Problem F_R.

Problem F_R. The objective of Problem F_R is to find (x_i, y_i, z_i) for some $i \in \mathbb{N}$ so as to

Minimize

$$\frac{A_i}{x_i} + \sum_{j \in \mathbb{N}} a_{ij} y_{ij} + b_{ij} y_{ij} + g_{ij} \sqrt{L_i + y_{ij}}$$

(26)

Subject to

*equation (15); $\forall j \in \mathbb{N}$

$$x_i - y_{ij} \leq 0; \quad \forall j \in \mathbb{N}$$

(27)

$$x_i, y_{ij} \geq 0;$$

(28)

The existence of a solution is proven using the same approach given by [12].

Proposition 3. Given an ordered set of item subscripts \mathbb{N}, so that for $\mathbb{N} \ni j = 1, 2, \ldots, n, y_1 \leq y_2 \leq \cdots \leq y_n$, if (x_i^*, y_i^*, z_i^*) is a KKT point for an instance of problem F_R, then $x_i = y_1 = \cdots = y_m$ for some $m \in \mathbb{N}$, with $m \leq n$.

Proof. We proceed with a proof by contradiction. If (x_i^*, y_i^*, z_i^*) were a KKT point and $\forall m \in \mathbb{N}, t < y_m$ then $u_j = 0, \forall j \in \mathbb{N}$ which would preclude the gradient condition shown in equation (29) from having a real solution.

$$-\frac{A_i}{x_i^2} + \sum_{j \in \mathbb{N}} u_{ij} = 0,$$

(29)

Moreover, since m has n possible values, there are at most n KKT points. \(\square\)

Problem F. Problem F is the formulation for the single family problem. The objective of Problem F is to find the cycle time, T, the multipliers k_j, and the
safety factor z_j for each item $j \in \mathbb{N}$ so as to

\[
\text{Minimize } C(T, z, k) = \frac{A}{T} + \sum_{j \in \mathbb{N}} \frac{a_j}{Tk_j} + b_jTk_j + g_j\sqrt{L + Tk_j}
\]

(30)

Subject to $T \geq 0$

(31)

$K_j \in \mathbb{P}; \quad \forall j \in \mathbb{N}$

(32)

$(Tk_j + L) - \left(\frac{\alpha}{\delta} \right)^2 E(z_j) \left(\frac{f}{1 - f} \right) - z_j \right)^2 = 0; \quad \forall j \in \mathbb{N}$

(33)

Solution Steps for the Single Family Problem

The steps for solving Problem F are

1. solve Problem S n times; for each item $j = 1, \ldots, n$ run
 - algorithm (1), and
 - algorithm (2)

2. employ algorithm (3) to
 - find the KKT points of the continuous relaxation of Problem F
 - The number of KKT points is between 1 and n
 - select the KKT point, m^*, with the lowest objective value, $c_m^* (t^*, y^*)$.
 - $c_m^* (t^*, y^*)$ is a lower bound for Problem F.

3. employing algorithm (5), execute the roundoff algorithm to
 - compute n trial values of (T, k)
 - select the cost minimizing (T^*, k^*)
Algorithm 3 Find and Test KKT Points

1: Initialize
 \[
 \forall j \in \mathbb{N}, \ y_j \leftarrow t_j
 \]
 reindex \(y \) so that \(y_1 \leq y_2 \leq y_n \)
 set \(M = \{ m : \text{the solution produced in iteration } m \text{ is feasible} \} = \emptyset \)

2: Functions

3: \[c_m(t, y) = \frac{\bar{a}_m}{t} + \bar{b}_m t + \sum_{j=m+1}^{n} \left(\frac{a_j}{y_j} + b_j y_j \right) + \sum_{j \in \mathbb{N}} \left(g_j \sqrt{y_j} \right) \]
 \{use equation (27) to compute \(g_j \)\}

4: for \(m = 1 \) to \(n \) do
5: \[\bar{a}_m = A + a_1 + \cdots + a_m \]
6: \[\bar{b}_m = b_1 + \cdots + b_m \]
7: end for

8: Compute \((\bar{t}_1, \bar{z}_1) \)
 Using algorithm (1) and algorithm (2)
9: if \(\bar{t}_1 \geq y_2 \) then
10: The constraint in ?? is not satisfied; the solution is infeasible and will not result in a KKT point.
11: else
12: \(t \leftarrow \bar{y}_1 \leftarrow \bar{t}_1 \)
13: \(M \leftarrow \{ 1 \} \)
14: \(C \leftarrow c_1(t, y) \) \{use the function in statement 3\}
15: end if
16: for \(m = 2 \) to \(n \) do
17: Create dummy item \(m_0 \) by duplication item \(m \) and making one change:
18: \[a_0^m = \bar{a}_m \]
19: Compute \((\bar{t}_0^m, \bar{z}_0^m) \) for the dummy item
 Using algorithm (1) and algorithm (2)
20: Compute \((\bar{t}_m, \bar{z}_1, \ldots, \bar{z}_m) \)
 Using algorithm (2) and algorithm (4)
21: if \(\bar{t}_m < y_{m+1} \) then
22: for \(j = 1 \) to \(m \) do
23: \(t \leftarrow \bar{y}_j \leftarrow \bar{t}_j \)
24: end for
25: M \leftarrow \{ m \}
26: C \leftarrow c_m(t, y) \) \{use the function in statement 3\}
27: \{When \(\bar{t}_m \geq y_{m+1} \), the constraint in ?? is not satisfied; the infeasible solution is not a KKT point.\}
28: end if
29: end for
30: return \(m^* = \arg \min_{m \in M} C = \{ c_m(t, y) : (t, y) \text{ is a KKT point} \} \)
 \{Stop–exit algorithm (3) and proceed to algorithm (5).\}
Algorithm 4 Golden Section Search along t

1: Initialize
 \((t_0^a, t_0^b) \leftarrow (t_m^a, y_1)\)
 \(\delta^0 = t_0^b - t_0^a\)
 \(\varepsilon \leftarrow 0.0001\)
 \(\omega = 1\)
 \(\beta \leftarrow \sqrt{\phi - 1}\)
 \(\alpha \leftarrow 1 - \beta\)

 Compute \(\omega\), the required number of iterations

2: while \(0.618^{(\omega - 1)} > \frac{\varepsilon}{\omega}\) do

3: \(\omega \leftarrow \omega + 1\)

4: end while

5: \((t^a_n, t^b_n) \leftarrow (t^a, t^b)\)

6: for \(k = 1\) to \(\omega\) do

7: \(\delta^k = t^b_n - t^a_n\)

8: \((\lambda^k, \mu^k) \leftarrow (t^a_n + \delta^k \alpha, t^b_n + \delta^k \beta)\)

9: \(\delta^k = \mu^k - \lambda^k\)

10: if \(\delta^k \leq \varepsilon\) then

11: \((t^{k+1}_a, t^{k+1}_b) \leftarrow (\lambda^k, \mu^k)\)

12: else

13: \(c^\lambda^k \leftarrow \frac{a_m}{\lambda^k} + b_m\lambda\)

14: \(c^\mu^k \leftarrow \frac{a_m}{\mu^k} + b_m\mu\)

15: for \(j = 1\) to \(m\) do

16: \(z^j_k \leftarrow Z(f_j, d_j, \sigma_j, \lambda^k)\)

17: \(g^j_k \leftarrow \begin{cases} h_j z^j_k \sigma_j & \text{if } z^j_k > 0 \\ \frac{1}{2} h_j z^j_k \sigma_j & \text{otherwise} \end{cases}\)

18: \(c^\lambda^k \leftarrow c^\lambda^k + g^j_k \sqrt{\lambda^k}\)

19: end if

20: end for

21: \(t^* = \frac{(t^{k+1}_a + t^{k+1}_b)}{2}\)

22: \(c^* = \frac{a_m}{t^*} + b_m t^*_m\)

23: for \(j = 1\) to \(m\) do

24: \(z^*_j \leftarrow Z(f_j, d_j, \sigma_j, t^*_m)\)

25: \(g^*_j \leftarrow \begin{cases} h_j z^*_j \sigma_j & \text{if } z^*_j > 0 \\ \frac{1}{2} h_j z^*_j \sigma_j & \text{otherwise} \end{cases}\)

26: \(c^*_m \leftarrow c^* + g^*_j \sqrt{t^*_m}\)

27: end for

28: return \(t^*_m\) and \(c^*_m\)

\{Stop-exit algorithm\}
Algorithm 5 Single-Family Roundoff Algorithm

1: Data
 \((t^*, y^*)\)
2: Initialize
 \(\gamma \leftarrow t^*\) \{Begin Roundoff Procedure\}
3: for \(j = 1\) to \(n\) do
4: Find \(t^j \in \mathbb{Z}_+ \ni y_j = t^j 2^{\pi^j}\) and \(t^j \in [\gamma, 2\gamma)\)
5: end for
6: Add a subscript \(h\) to \(t^j\) and \(\pi^j \ni t^j_h \leq t^j_{h+1}\)
7: for \(\phi = 1\) to \(n\) do
8: \(\pi^j_\phi \leftarrow \begin{cases} \pi^j_h - 1 & \text{if } h \leq \phi \\ \pi^j_h & \text{otherwise} \end{cases}\)
9: \(k^j_\phi \leftarrow 2^{\pi^j_\phi}\)
10: for \(j = 1\) to \(n\) do
11: \(z^j_\phi \leftarrow Z(f_j, d_j, \sigma_j, t_j)\)
12: end for
13: \(t^*_\phi = \arg\min_{t_\phi} c \{t^*_\phi, k_\phi\}\)
 \{Use algorithm (4)\}
14: end for
7 The Multiple Family Algorithm

The steps for solving Problem F are

1. solve Problem S \(n^2 \) times; for each item \((i, j) \in \mathbb{N} \times \mathbb{N}\) run
 - algorithm (1), and
 - algorithm (2)

2. employ algorithm (3) \(n^2 \) times; for each family \(i \in \mathbb{N} \)
 - find the KKT points of the continuous relaxation of Problem F
 - select the KKT point, \(m^* \), with the lowest objective value, \(c_i^m (x_i^*, y_i^*) \).
 \[- \sum_{i \in \mathbb{N}} c_i^m (x_i^*, y_i^*) \] is a lower bound for Problem F.

3. employing algorithm (6), execute the multi-family roundoff algorithm to
 - compute \(n^2 \) trial values of \((T, K, k)\)
 - select the cost minimizing \((T^*, K^*, k^*)\)
Algorithm 6 Multi-Family Roundoff Algorithm

1: Data
 \((t^*, y^*)\)
2: Initialize
 \(\gamma \leftarrow t^*\) \{Begin Roundoff Procedure\}
3: for \((i, j) \in \mathbb{N} \times \mathbb{N}\) do
4: Find \(t_{ij} \) and \(\pi_{ij} \in \mathbb{Z}_+ \ni y_{ij} = t_{ij}2^{\pi_{ij}} \) and \(t_{ij} \in [\gamma, 2\gamma)\)
5: end for
6: Add a subscript \(h\) to \(t_{ij} \) and \(\pi_{ij} \ni t_{ih} \leq t_{ih+1} \)
7: for \(\phi = 1\) to \(n^2\) do
8: \(\pi_{ij} \leftarrow \begin{cases}
 \pi_{ih} - 1 & \text{if } h \leq \phi \\
 \pi_{ih} & \text{otherwise}
 \end{cases} \)
9: \(k_{ij} \leftarrow 2^{\pi_{ij}}\)
10: for \(j = 1\) to \(n\) do
11: \(z_{ij}^\phi \leftarrow Z(f_{ij}, d_{ij}, \sigma_{ij}, t_{ij})\)
12: end for
13: \(t_\phi^* = \arg\min_{t_\phi} c(t_\phi^*, k_\phi)\)
 \{Use algorithm (4)\}
14: end for
8 Examples

8.1 Single Item Example

Data

\[d = 294 \quad \sigma = 143.1100 \quad h = \$0.18 \]
\[f = 0.9038 \quad a = \$143.43 \quad L = 5.1706 \]

Solution

\[z^* = 0.0561 \quad t^* = 2.7859 \quad c(t^*, z^*) = \$128.90 \]

Upper Bound

\[z_{ub} = 0.1101 \quad t_{ub} = 2.3338 \quad c(t_{ub}, z_{ub}) = \$130.63 \]

savings 1.3487%

8.2 Single Family Example

Data

\[A = \$486.09 \quad L = 1.7616 \]
\[d = \begin{bmatrix} 284 & 256 & 228 & 244 & 494 \end{bmatrix} \]
\[\sigma = \begin{bmatrix} 140.131 & 88.929 & 70.492 & 106.787 & 201.372 \end{bmatrix} \]
\[h = \begin{bmatrix} 0.12 & 0.17 & 0.14 & 0.17 & 0.26 \end{bmatrix} \]
\[f = \begin{bmatrix} 0.9500 & 0.9364 & 0.9407 & 0.9026 & 0.9787 \end{bmatrix} \]
\[a = \begin{bmatrix} 130.28 & 140.84 & 123.47 & 132.43 & 77.61 \end{bmatrix} \]
Solution

\[z^* = 0.5824 \quad t^* = 2.0119 \quad c(t^*, k^*, z^*) = 956.61 \]

\[k = \begin{bmatrix} 1 & 2 & 2 & 2 & 2 \end{bmatrix} \]

Lower bound

\[z_{lb} = 0.5824 \quad t_{lb} = 2.8116 \quad c(t_{lb}, k_{lb}, z_{lb}) = 905.75 \]

The solution is = 5.62% above the lower bound.

Upper Bound

\[z_{ub} = 3 \quad t_{ub} = 2 \quad c(t_{ub}, k_{ub}, z_{ub}) = 1500 \]

savings 20%

8.3 Multi-Family Example

Data

\[S = \begin{bmatrix} 276.63 & 407.97 & 220.08 & 365.42 & 466.37 \end{bmatrix} \]

\[L = \begin{bmatrix} 1.3848 & 1.9996 & 2.4608 & 1.3720 & 0.3250 \end{bmatrix} \]

\[d = \begin{bmatrix} 148 & 201 & 357 & 432 & 428 \\
257 & 78 & 74 & 200 & 199 \\
475 & 197 & 482 & 67 & 392 \\
320 & 398 & 176 & 391 & 388 \\
366 & 88 & 337 & 389 & 156 \end{bmatrix} \]

\[\sigma = \begin{bmatrix} 60.47 & 63.41 & 170.59 & 208.49 & 130.15 \\
118.19 & 38.72 & 28.17 & 87.05 & 58.67 \\
221.61 & 93.79 & 130.52 & 32.23 & 114.35 \\
124.03 & 115.41 & 84.23 & 138.32 & 125.50 \\
93.05 & 25.48 & 166.50 & 120.98 & 40.82 \end{bmatrix} \]
\[h = \begin{bmatrix} 0.13 & 0.17 & 0.12 & 0.13 & 0.19 \\ 0.12 & 0.10 & 0.09 & 0.19 & 0.17 \\ 0.16 & 0.14 & 0.17 & 0.11 & 0.19 \\ 0.10 & 0.11 & 0.12 & 0.13 & 0.13 \\ 0.15 & 0.10 & 0.14 & 0.16 & 0.15 \end{bmatrix} \]

\[f = \begin{bmatrix} 0.9505 & 0.9706 & 0.9205 & 0.9101 & 0.9527 \\ 0.9876 & 0.9662 & 0.9405 & 0.9107 & 0.9393 \\ 0.9515 & 0.9889 & 0.9683 & 0.9525 & 0.9318 \\ 0.9972 & 0.9888 & 0.9010 & 0.9630 & 0.9958 \\ 0.9805 & 0.9279 & 0.9148 & 0.9246 & 0.9659 \end{bmatrix} \]

\[s = \begin{bmatrix} 114.49 & 99.659 & 120.05 & 105.39 & 91.691 \\ 96.841 & 92.235 & 143.21 & 106.64 & 122.36 \\ 95.596 & 97.598 & 77.541 & 113.06 & 113.03 \\ 95.18 & 104.46 & 87.483 & 94.856 & 133.46 \\ 115.89 & 142.08 & 111.45 & 117.07 & 99.08 \end{bmatrix} \]

Solution

\[t^* = 2.9408 \]

\[c(t^*, K^*, k^*, z^*) = $3,384.38 \]

\[K^* = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]

\[k^* = \begin{bmatrix} 0.3501 & 0.1958 & 0.6496 & 0.2687 & 0.4770 \\ 1.2380 & 0.1792 & 0.2080 & 0.6005 & 0.09260 \\ 0.5880 & 0.5989 & 0.1503 & 1.3114 & 0.3988 \\ 0.5748 & 1.5647 & 1.1052 & 1.7691 & 0.1263 \\ 0.7062 & -0.0473 & 0.1641 & 0.3915 & -0.3614 \end{bmatrix} \]

Lower bound

\[c(t_{lb}, z_{lb}) = $3,341.70 \]

performance: 1.28% above the lower bound.
Upper Bound

t_{ub} = 2.5186

c(t_{ub}, K_{ub}, k_{ub}, z_{ub}) =$3,556.47

\[K_{ub} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]

\[k_{ub} = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 & 4 \\ 2 & 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix} \]

\[z_{ub} = \begin{bmatrix} 0.4065 & 0.2516 & 0.3222 & 0.6973 & 0.2951 \\ -0.0476 & 1.2712 & 0.2725 & 0.6463 & -0.1409 \\ 0.3875 & 0.6460 & 0.2188 & 1.3424 & 0.4517 \\ 0.3980 & 1.1436 & 1.5945 & 1.7945 & 0.1846 \\ 0.0123 & 0.7475 & 0.2128 & 0.4397 & -0.2908 \end{bmatrix} \]

performance: 5.08\% below the upper bound.

9 Evaluation

We tested the effectiveness of our solution procedures with a computational study. We chose the time unit to be one day. The ranges of values for other problem data were chosen to reflect realistic industrial situations. The detailed data and results are available from the authors. The data were generated from uniformly distributed parameters as shown in Table 2.

In the multi-family environment, our algorithm typically resulted in a solution the averaged 1.01\% above the lower bound.
Table 2: Problem Sampling Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family order cost</td>
<td>$</td>
<td>$U(200, 500)</td>
</tr>
<tr>
<td>Delivery lead-time</td>
<td>days</td>
<td>$U(0, 3)</td>
</tr>
<tr>
<td>Item order cost</td>
<td>$</td>
<td>$U(75, 150)</td>
</tr>
<tr>
<td>Item holding cost</td>
<td>$/unit/day</td>
<td>$U(0.08, 0.2)</td>
</tr>
<tr>
<td>Item demand</td>
<td>units/day</td>
<td>$U(50, 500)</td>
</tr>
<tr>
<td>Item demand standard deviation</td>
<td>fraction of mean demand</td>
<td>$U(0.25, 0.5)</td>
</tr>
<tr>
<td>Item fill-rate</td>
<td>fraction of demand met from inventory</td>
<td>$U(0.90, 0.999)</td>
</tr>
</tbody>
</table>
10 Summary

We have extended the Joint Replenishment Problem to a multi-family environment that explicitly includes the consideration of safety stocks for a fill rate criterion. We exploited a number of properties of the problem to develop an efficient solution procedure. The form of our solution is a basic period cyclic schedule, with item multipliers restricted to integer-powers-of-two.

We need to develop procedures to take the solution for our problem \((T, K, k)\) and actually construct a feasible schedule of deliveries to each of the basic periods in a cycle to ensure that constraints on receiving and handling incoming shipments are met.

References

