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Many supply chains offer goods and services in time-based competition with other chains, but there are

few normative results concerning competitive dynamics. We formulate and analyze normative models of

competition between supply chains and among the firms comprising a supply chain. The assumptions are

those for which an echelon base-stock policy is known to be optimal if the chain is a centrally managed

monopolist (or perfect competitor). However, we show that generally there is no equilibrium point in echelon

base-stock policies when supply chains compete with each other, whether centralized or not. In contrast,

there is an equilibrium point in echelon base-stock policies when a monopolistic supply chain is decentralized.
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1. Introduction

The profitability of many firms depends on the competitive effectiveness of supply chains in which

they are members. Glitches at a single supplier or a supplier’s supplier affect the chain’s overall

ability to meet customer commitments. For example, Firestone tire distri-butors were hurt badly

by the manufacturer’s pricing policy following the Ford Explorer-Firestone tire adverse publicity

a few years ago. However, their competitors, such as Goodyear, benefited from the mishap (White

et al. (2001)).

Little is known about the operational dynamics of supply chain competitive behavior. In the

economics of industrial organizations, an ample normative literature on competing supply chains

has few operational details (Greenhut and Ohta (1979), Grossman and Hart (1986), and Ziss

(1995)). In contrast, most of the normative results in the operations literature are based on either

perfect competition or monopoly. This literature during the past decade seems to have focused on

the effects of echelon base-stock policies. That is, orders are placed at each stage in the supply

chain in order to raise echelon inventory to a target level. However, it seems to us that imperfect

competition characterizes the interactions among most supply chains. In other words, little is

known about the normative operational dynamics of supply chains in their arguably most prevalent

environment. This study investigates the extent to which echelon base-stock policies are appropriate
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for these environments.

The necessary attributes of a model of operational dynamics in supply chain competition include

two (or more) supply chains, two (or more) echelons in each supply chain, and decisions made in

numerous time periods. Several previous studies nearly meet these criteria. Boyaci and Gallego

(2004) model competing two-echelon supply chains which attract Poisson demands that are pro-

portional to their service rates. We say that a supply chain is coordinated or centralized if it has,

in effect, one decision maker. The authors analyze the static strategic game in which each player

(supply chain) has two alternatives, namely to coordinate or to remain uncoordinated. The payoffs

in the resulting bimatrix game stem from the subsequent interactions of the firms. Coordination

turns out to be a dominant strategy for both supply chains, but the aggregated expected profits of

the chains are smaller under the coordinated scenario than under the uncoordinated scenario. This

paper differs from Boyaci and Gallego (2004) in two important ways. First, decisions are made

every period, and second, the supply chains interact through product availability, i.e., each retailer’s

demand depends both on her own and the competing retailer’s inventories. This inter-dependency

of demand on inventory may be caused by a substitution effect or a demand stimulation effect of

inventory. Netessine et al. (2005) review the literature in which customers substitute one product

with another or switch from one retailer to another when their first-choice product or source is out

of stock.

Several normative studies investigate interactions among the echelons in a single uncoordinated

multi-echelon supply chain. These studies implicitly assume either monopoly or perfect competi-

tion, but they are relevant here due to their multiplicity of decision makers. Lee and Whang (1999)

assume that the lower stage incurs backorder penalties, and the upper stage incurs holding costs.

They design performance mechanisms to induce each member to choose a system-optimal base-

stock level. In a similar model, Porteus (2000) analyzes responsibility tokens as the coordination

scheme. Chen (1999) designs an accounting scheme which induces each member to minimize its

own cost without compromising the system-wide performance. Cachon and Zipkin (1999) consider

a static strategic game in which the wholesaler and retailer each make once-and-for-all choices of

a base-stock level policy. A pair of payoffs, the long-run average profits per period, is associated

with each pair of choices. They show that the resulting bimatrix game has a unique equilibrium

point that differs from the system-optimal solution. Hence, they develop a linear transfer scheme

that coordinates the supply chain. In contrast to these references, the firms in this paper make

decisions each period and they are not assumed ex ante to use base-stock policies.
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There are several game theoretic analysis of supply chain “front ends,” i.e., of models with only

a single echelon (the “retailer”). Kirman and Sobel (1974) analyze a dynamic oligopoly model in

which competing firms set prices and inventory levels each period. They characterize an equilibrium

point when demand depends on prices but (unlike the present study) not on inventories. Netessine

et al. (2005) analyze the same model except that demand depends on retailers’ inventories but not

on prices. They investigate the effects of different representations of customer backlogging behavior

and the impacts of retailers’ retention incentives on customers when stockouts occur. Bernstein

and Federgruen (2004) model a dynamic inventory and pricing game for a distribution system with

one wholesaler and two retailers engaged in price competition. They improve on Kirman and Sobel

(1974) by obtaining sufficient conditions for the existence of a unique unrandomized equilibrium

point.

The next section specifies a model with dynamic stochastic interactions between and within two

supply chains who compete through product availability. Each chain consists of a wholesaler and

a retailer with an established relationship. If a customer at one retailer encounters a stockout,

she might switch her patronage to the other retailer. As a result, each retailer’s realized demand

depends on both retailers’ inventory levels which in turn depend on the wholesalers’ inventories.

Hence, the supply chains interact through all firms’ inventory policies.

We analyze four scenarios: a single monopolistic decentralized supply chain whose retailer and

wholesaler are separate decision-makers, two competing decentralized supply chains, two competing

centralized supply chains, and a hybrid scenario in which one supply chain is centralized but the

other is not. Mimicking the well-known result that an echelon base-stock policy is optimal for

a centralized serial supply chain, we prove that the firms in a decentralized supply chain have

equilibrium points in echelon base-stock policies. The result is valid for chains with more than

two members. However, when two or more supply chains compete, centralized or not, we find that

generally there is no equilibrium point in echelon base-stock policies.

Section 2 presents the model, and §3 shows that generally there is no equilibrium point in eche-

lon base-stock policies when (a) centrally managed chains compete with each other, and (b) when

a centrally managed chain competes with a decentralized chain. The interests of the firms in a

decentralized chain are not congruent and, therefore, they are essentially competing with each

other even if they all share the same information. In the resulting dynamic game in a monopo-

listic decentralized chain, §4 proves that there is an equilibrium point at which each firm uses an

echelon base-stock policy. Then in §5 analyzes a dynamic game among the firms comprising two
decentralized chains in which we assume that the wholesalers expedite shipments to the retailers
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whenever shortages occur. As a result, there is an equilibrium point at which all the firms employ

echelon base-stock policies. Conclusions and unanswered questions are in §6.

2. Model

The model is a dynamic supply chain generalization of Cournot oligopoly. Each supply chain

consists of a wholesaler and a retailer with complete information. The market determines prices

and quantities actually sold. If the chains are centralized, these decisions are made by the chains’

coordinators. At the beginning of each period t (t = 1,2, · · · ) the retailers and wholesalers (or
the coordinators if the chains are centralized) review their inventories and make replenishment

decisions. In supply chain i (i=1,2), let xrit and x
wi
t denote the retailer’s and wholesaler’s respective

inventory levels at the beginning of period t and zrit and z
wi
t their order quantities. We indicate a

pair of variables for both chains by suppressing chain-identifying superscripts; for example, xrt =

(xr1t , x
r2
t ).

For specificity we assume that there is a lag of one period to transfer goods from a supplier to

a wholesaler, and that delivery is immediate from a wholesaler to a retailer. Therefore, the total

supplies available to satisfy demand at the retailers are their order-up-to levels. However, with

minor changes the results are valid for any integer-valued delivery lags between chain members.

Let yri and ywi denote the respective retailer’s and wholesaler’s inventory positions (i.e. on-hand

plus on-order) in supply chain i after purchase orders are processed and transported in period t:

yrit = x
ri
t + z

ri
t and ywit = xwit + z

wi
t − zrit (1)

We assume that each chain member’s storage is bounded above, namely that yrit ≤ uri and ywit ≤ uwi

with uri <∞ and uwi <∞ for each i. Consistent with the complete information assumption, we

assume that the retailers do not order more than the wholesalers’ on-hand inventories. Therefore,

0≤ zwit and 0≤ zrit ≤ xwit . It can be shown that zrit ≤ xwit is a redundant constraint in a model with

expediting and altered information conditions.

When a= (ai) and b= (bi) are vectors of the same dimension,min{a, b} denotes the vector whose
ith component is min{ai, bi}. We preclude planned backlogging and, therefore, constrain yri ≥ 0
and ywi ≥ 0. If the initial conditions satisfy xri1 ≤ uri and 0≤ xwi1 ≤ uwi, the bounds correspond to

xwt ≤ ywt ≤ uw xrt ≤ yrt ≤min{xrt +xwt , ur} (2)

Let Di
t be the nonnegative random demand encountered by retailer i in period t. Since each

component of Dt may depend on y
r
t , we sometimes write Dt(y

r
t ). This models an array of more
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specific customer behaviors (Kirman and Sobel (1974) and Netessine et al. (2005)). For any ω1 ≥ 0
and ω2 ≥ 0, we assume that D1(ω1,ω2),D2(ω1,ω2), · · · are independent and identically distributed
random vectors; let D(ω1,ω2) = (D

1(ω1,ω2),D
2(ω1,ω2)) be a vector with the same probability

distribution as D1(ω1,ω2).

We let the retailers’ revenues and inventory-related costs be random variables whose probability

distributions depend on the vector y = (y1, y2) of retailers’ supply levels. Let Git be retailer i’s
revenue net of inventory-related costs in period t and let Gt = (G1t ,G2t ). We assume that Gt is
conditionally independent of G1, ...,Gt−1 given yt and that the conditional distribution of Gt given
yt= y is the same for all t. These assumptions are consistent with many specific models in operations

and economics.

We assume that the wholesalers incur linear holding costs and that all firms incur proportional

ordering costs and are risk-neutral profit-maximizers. However, the paper’s conclusions remain

valid if decision-makers are risk-averse with exponential utility functions (Chung and Sobel (1987),

Bouakiz and Sobel (1992)). Let cwi , c
r
i , and h

w
i be wholesaler i’s respective unit purchasing cost,

wholesale price, and unit holding cost; let ρi be retailer i’s unit penalty cost of excess demand.

For each unit of excess demand, if any, the wholesaler pays αiρi (0≤αi ≤ 1) and the retailer pays
(1−αi)ρi.
We assume that excess demand (Di

t − yrit )+ is backlogged and that the following chronology
of events occurs during each period t: inventory levels are observed, ordering decisions are made,

retailer demands are realized, revenues and costs are credited and debited, and inventory balances

are updated. Hence, the dynamics are

xrt+1 = y
r
t −Dt(y

r
t ) xwt+1 = y

w
t (3)

Let _+ denote the nonnegative real numbers. Some of the paper’s results remain valid if the

backlogging assumption is replaced with xrt+1 = y
r
t − θt(y

r
t ,Dt) where θ1(y

r, d), θ2(y
r, d), · · · are

independent and identically distributed nonnegative random vectors for each yr and d, and realized

θ1(·,D1) is concave on _+. In particular, this assumption includes excess demand being lost.
Let βri and βwi be the single-period discount factors in supply chain i, and define the following

echelon variables:

srit = x
ri
t arit = y

ri
t swit = x

ri
t +x

wi
t awit = y

ri
t + y

wi
t art = (a

r1
t , a

r2
t ) (4)

The constraints and dynamics in (2) and (3) correspond to

swit ≤ awit srit ≤ arit ≤ swit (5)
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swit+1 = a
wi
t −Di

t srit+1 = a
ri
t −Di

t (6)

Let bri and bwi denote the expected present values of the retailer’s and wholesaler’s profits, and

let bri and bwi denote the corresponding expected values. Let a
r = (ar1, ar2) denote a generic value

of the pair art = (a
r1
t , a

r2
t ) and define the following functions:

Li(a
r) =E[{Gi1− (1−αi)ρi(ari−Di

1)
+− [(1−αi)ρi+βricri ]Di

1}|ar1 = ar] (7)

− [cri (1−βri)− (1−αi)ρi]ari

Hi(a
r, awi) = [αiρi+h

w
i + c

r
i (1−βwi)]ari− [hwi + cwi (1−βwi)]awi (8)

−E{αiρi(ari−Di
1)
+− [βwi(cri − cwi )+αiρi]D

i
1|ar1 = ar, awi1 = awi}

Then

bri =
∞3
t=1

βt−1ri

F
Git − cri zrt − (1−αi)ρi(Di

t− yrit )+
k

=
∞3
t=1

βt−1ri

F
Git − cri (1−βri)yrit −βricriDi

t− (1−αi)ρi(Dri
t − yrit )+

k
+ crix

ri
1

So

bri =E
\ ∞3
t=1

βt−1ri Li(a
r
t )
�
+ cri s

ri
1 (9)

The present value of the wholesaler’s profits is

bwi =
∞3
t=1

βt−1wi

�
cri z

ri
t − cwi zwit −hwi ywit −αiρi(Di

t− yrit )+
=

=
∞3
t=1

βt−1wi

F
(cri − cwi )(1−βwi)yrit +βwi(c

r
i − cwi )Di

t− [hwi + cwi (1−βwi)]ywit

−αiρi(Di
t− yrit )+

k
+ cwi x

wi
1 − crixri1

So

bwi =E
\ ∞3
t=1

βt−1wi Hi(a
r
t , a

wi
t )
�
+ cwi s

wi
1 − (cri + cwi )sri1 (10)

An echelon base-stock policy, loosely speaking, selects order quantities to move each echelon’s

inventory position as close as possible to a target level. Let ari∗ and a
wi
∗ , respectively, denote the

retailer’s and wholesaler’s targets (decision variables) in supply chain i. In view of (5), an echelon

base-stock policy in an infinite-horizon model stipulates arit =min{max{ari∗ , srit }, swit } and awit =

max{awi∗ , swit }. If sri1 ≤ ari∗ and swi1 ≤ awi∗ as we typically assume, then arit = min{ari∗ , swit } and
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awit = a
wi
∗ for all t. The same is true in a finite-horizon model except that ari∗ and a

wi
∗ acquire time

indices.

Although the foregoing model is a sequential game in which the players’ time streams of rewards

are discounted over an infinite horizon, for simplicity in the following sections we analyze the

corresponding sequential game with a finite horizon. We introduce some notation to explain a

solution concept (Heyman and Sobel (2004), p. 452) that slightly generalizes the standard notion

of an equilibrium point of a sequential game.

In a sequential game let Q be the set of players; at various points in the following sections, the

sequential game models have two to four players. For each q ∈Q, let Πq be a strategy for player
q, that is, a non-anticipative rule for deciding what action to take each period as a function of the

elapsed history thus far. Let Π= (Πq, q ∈Q) be the tuple of all players’ strategies. It is common
to write Π= (Πq,Π−q) where Π−q consists of the strategies of all the players except player q. Let

vqs(Π,N) be the expected present value of the rewards to player q during an N -period horizon if

the players employ strategies in Π and s is the state at the beginning of the first period. For each

player q let πq be a subset of player q’s policies, and let π =×q∈Q πq. Let SI be a subset of states.
We say that Π∗ = (Π∗q, q ∈Q) is an N-period equilibrium point with respect to initial states s ∈ SI
and policies in π if

vqs(Π
∗,N)≥ vqs [(ξq,Π∗−q),N ] ∀s∈ SI, ξq ∈ πq, q ∈Q

Our interest is in supply chain games which have equilibrium points in echelon base-stock policies

with respect to the set π of stationary policies and a nonempty set of initial states SI. In game-

theoretic terminology, such a Π∗ would be Markov-perfect and each player would employ a time-

invariant strategy.

3. Dynamic Competition Between Centralized Supply Chains

The most important finding in the paper, a negative result, concerns centrally managed supply

chains. We explain why there is generally no equilibrium point at which each chain employs an

echelon base-stock policy. As centralization of an industry’s competing supply chains becomes

widespread, there is competitive advantage in managing supply levels with policies that are more

complex than would be worthwhile if the chains were decentralized.

Competing centralized supply chains lack an equilibrium point among echelon base-stock policies.

Let bi be the sum of the retailer’s and wholesaler’s expected present values of profits in supply

chain i and define

γri(a
r) = [cwi (1−βi)+hwi + ρi]ari+E[Gi1− ρiDi− ρi(ari−Di)+]
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γwi(a
wi) =−[cwi (1−βi)+hwi ]awi

Summing (9) and (10) yields

bi =E
\ ∞3
t=1

βt−1i

�
γri(a

r
t )+ γwi(a

wi
t )
=
+ cwi (s

wi
1 − sri1 )

�
As in Sinha and Sobel (1997), if supply chain two uses a base-stock policy with target echelon

supply levels ar2∗ and a
w2
∗ at the retailer and the wholesaler, respectively, and aw2∗ ≥ sw21 and ar2∗ ≥

sr21 , then supply chain one’s best response corresponds to the following dynamic program:

f1t (s
r1, sw1, sw2) = supar1,aw1{γr1(ar1,min{ar2∗ , sw2})+ γw1a

w1+β1E[f
1
t−1(a

r1−D1,

aw1−D1, a
w2
∗ −D2)] : s

r1 ≤ ar1 ≤ sw1 ≤ aw1}
That is, chain one’s best response depends on the inventory levels in chains one and two. An echelon

base-stock policy at chain one would depend on inventory levels only in chain one and, therefore,

it could not be a best response.

This conclusion is consistent with the following intuition. Suppose that both supply chains use

echelon base-stock policies at an equilibrium point. When retailer two’s order is constrained by

his wholesaler’s inventory while wholesaler one’s inventory is ample, because inventory information

is available to all players, the coordinators of chain one can exploit his competitor’s shortage by

raising his retailer’s supply in that period to a level that is higher than his target level due to

demand substitutability. So supply chain one reaps extra profit by deviating from echelon base-

stock policies. Similarly, knowing chain one’s response, chain two should sometimes deviate from

his echelon base-stock policy. Therefore, competing centralized supply chains generally lack an

equilibrium point in echelon base-stock policies.

A similar argument shows that competition between centralized and decentralized chains lacks

an equilibrium point among echelon base-stock policies.

4. Decentralized Monopolistic Supply Chain
4.1. The General Case

Here we suppress the chain label i and consider the interactions between a wholesaler and a retailer

in a monopolistic supply chain. If the wholesaler employs an echelon base-stock policy with base-

stock level aw∗ ≥ sw1 , then awt = aw∗ and swt+1 = aw∗ −Dt for all t. So the retailer’s decision problem

corresponds to the following dynamic program with V0(·, ·)≡ 0, sr ≤ sw and n= 1,2, · · · :

Vn(s
r, sw) = max

+
Wn(a) : s

r ≤ a≤ sw
�

(11)

Wn(a) = L(a)+βrE{Vn−1(a−D,aw∗ −D)}
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It follows from (7) and the exogenous distribution of demand that L(·) is concave on its domain
if E(G1|ar1 = a) is a concave function of a. Many specific examples yield concavity including G1 =
p ·min{D1, a

r
1}−hr(ar1−d1)+. The first term is revenue that is proportional to the lesser of supply

and demand, and the second term is an inventory cost that is proportional to the excess supply.

An induction starting with n= 0 establishes the following conclusion.

Lemma 1. If E(G1|ar1 = a) is a concave function of a, then Vn(·, ·) and Wn(·) are concave func-
tions on their domains (n=1,2, ...).

In a monopolistic decentralized chain, a base-stock policy is the retailer’s best response to the

wholesaler’s use of an echelon base-stock policy.

Theorem 1. A base-stock policy is optimal in (11). That is, there is a scalar ar∗n such that

a=max{sr, ar∗n} is optimal in (11).

Proof. If the wholesaler employs an echelon base-stock policy, the retailer faces a Markov decision

process in which the retailer’s best response must be an optimal policy. Select ar∗n ∈ argmax Wn(·);
then a∗ =min{sw,max{ar∗n, sr}} is optimal in (11). There are three cases:

a∗ =

⎧⎨⎩ a
r
∗n Case A: s

r ≤ ar∗n ≤ sw;
sr, Case B: ar∗n < s

r ≤ sw (transient case);
sw, Case C: sr ≤ sw ≤ ar∗n.

Let ã=max{ar∗n, sr} and observe that L(min{ã, sw}) =L(min{max{ar∗n, sr}, sw}) =L(a∗). There-
fore, ã= ar∗n = a

∗ and ã= sr = a∗ in cases A and B, respectively. In case C, ã= ar∗n and a
∗ = sw,

so L(a∗) = L(sw) and L(min{ã, sw}) = L(min{ar∗n, sw}) = L(sw). Therefore, ã =max{sr, ar∗n} is
optimal.

When the retailer uses a base-stock policy with target level ar∗ ≥ sr1, then art = min{swt , ar∗}
because the retailer cannot obtain more than the wholesaler’s on-hand inventory. So the wholesaler’s

decision problem corresponds to the following dynamic program with v0(·, ·) ≡ 0, sr ≤ sw, and
n=1,2, · · · :

vn(s) =max{Jwn (a, s) : a≥ s} (12)

Jwn (a, s) =H(min{s, ar∗}, a)+βwE{vn−1[a−Dt(min{s, ar∗})]}

Lemma 2. For each n, vn(·) and Jn(·, ·) are concave functions on their domains.

Proof. In order to begin a straightforward induction starting with n= 0 and v0 ≡ 0 yield
Jw1 (a, s) =H(min{s, ar∗}, a) = β(cr− cw)d−αρE[Dt−min{s, ar∗}]+

+ [cr(1−β)+hw]min{s, ar∗}− [cw(1−β)+Hw]a
(13)

which is a sum of concave terms.
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There is a pure strategy equilibrium point at which the firms in a monopolistic decentralized

supply chain employ the same kind of policy as if they were in a monopolistic centralized supply

chain.

Theorem 2. If E(G1|ar1 = a) is a concave function of a, then there are scalars ar∗ and aw∗ such
that the decentralized monopoly supply chain game has an equilibrium point relative to [0, ar∗]×[0, aw∗ ]
at which (art , a

w
t ) = (min{ar∗, swt }, aw∗ ), t= 1,2, ....

Proof. Consider the one-period two-player strategic game Γ in which the retailer and wholesaler,

respectively, choose ar ∈ [0, ur] and aw ∈ [0, uw] and receive payoffs L(ar) and H(ar, aw). Then Γ,
termed the reduced game, has a pure strategy equilibrium point (ar∗, a

w
∗ ) due to the concavity of

L(·) and H(·, ·) and Debreu (1952). Because of the additive separability of (9) in (art , sr1) and (10)
in (awt , a

r
t ;s

w
1 , s

r
1), the nonnegativity of demands, (5), and (6), following Sobel (1981), an induction

establishes that the dynamic game with payoffs (9) and (10) has an equilibrium point relative to

[0, ar∗]× [0, aw∗ ] consisting of (art , awt ) = (min{ar∗, swt }, aw∗ ) for all t=1,2, · · · .

4.2. Decentralized Supply Chain with Expedited Shipment

This sub-section is related to Cachon and Zipkin (1999) in which each firm’s criterion is its long-run

average profit per period (no discounting) and each firm chooses an echelon target inventory level.

Thus the dynamic game becomes a static strategic game in which each firm’s decision is its target

echelon supply level. Cachon and Zipkin (1999) analyze this strategic game and conclude that the

wholesaler has little influence on the retailer’s strategy. We aim to garner additional insight into

the wholesaler’s role in a decentralized supply chain.

We assume that whenever the wholesaler cannot completely fill the retailer’s order, she expedites

the shortfall from her supplier to the retailer at unit cost λcw (λ> 1). Expediting may occur because

the retailer has more power, or because the wholesaler wants to retain the retailer’s goodwill. In

addition, if the retailer incurs large losses upon stockout, he may require the wholesaler to provide

this premium service. We note that as λ rises, the wholesaler should raise her base-stock level to

reduce expediting cost.

The retailer’s expected profit per period remains the same as (9) but srt ≤ art ≤ swt in (5) is
replaced with srt ≤ art . For simplicity, let α = 0, i.e., the wholesaler does not share the retailer’s
backorder cost. This simplification affects the numerical values of the players’ stock levels but not

the structure of equilibrium points. Moreover, since the wholesaler fulfills the retailer’s order in

each period, it is reasonable to hold the retailer fully accountable for excess demand. Since the

retailer’s ordering quantity is not constrained by the wholesaler’s inventory, an argument that is
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similar to the proof of Theorem 2 yields the optimality (relative to [0, ar∗]) of the retailer’s use of a

base-stock policy consisting of art = a
r
∗ for all t= 1,2, · · · . Now we address the effect of this policy

on the wholesaler.

The expediting feature of the model alters the expected present value of the wholesaler’s profit

from (10). Under the expediting assumption, awt = (s
w
t −ar∗)++ zwt + ar∗. The dynamics remain the

same as in §2, i.e., swt+1 = awt −Dt and s
r
t+1 = a

r
∗ −Dt, but the wholesaler’s ordering constraint

zwt ≥ 0 corresponds to awt ≥ ar∗ for all t = 1,2, · · · , which is satisfied (as assumed in §2) because
planned backlogging is precluded. The resulting expected present value of the wholesaler’s profit

is

bw =E
∞3
t=1

βt−1w

F
cr(ar∗− srt )− cwzwt −λcw(ar∗− swt )+−hw(awt −ar∗)

k
=E

∞3
t=1

βt−1w

F
βw(c

r− cw)Dt(a
r
∗)+
J
hw+ cr(1−βw)

o
ar∗−
J
hw+ cw(1−βw)

o
awt

−βwcw(λ− 1)
J
ar∗− awt +Dt(a

r
t )
o+k− (λ− 1)cw(ar∗− sw1 )+− crsr1+ cwsw1

=E
� ∞3
t=1

βt−1w M(ar∗, a
w
t )
=
− (λ− 1)cw(ar∗− sw1 )+− crsr1+ cwsw1

(14)

with the definition

M(ar, aw) = βw(c
r− cw)E[D1(a

r)]+ [hw+ cr(1−βw)]ar− [hw+ cw(1−βw)]aw

−βwcw(λ− 1)E[ar− aw+ d(ar)+ η]+
(15)

In the braces on the first line of (14), the first term is the wholesaler’s revenue in period t, the second

is the purchasing cost for a regular order, the third term is the purchasing cost of an expedited

order, and the last term is the holding cost. We observe that the wholesaler’s single-period measure

of effectiveness, M(a, ·), has economies of scale, i.e., for any a∈_, M(a, ·) is concave on _+.
The wholesaler faces a Markov decision process with payoff (14) which is parameterized by the

wholesaler’s target base-stock level. Let aw∗ ∈ argmaxM(ar∗, aw). If aw∗ ≥ sw1 , then aw∗ ≥ swt = aw∗ −
Dt−1 for t≥ 2 because Dt is nonnegative. So a

w
t = a

w
∗ is optimal for all t= 1,2, · · · . In conclusion,

the dynamic game with payoffs (9) and (14) has an equilibrium point relative to [0, ar∗]× [0, aw∗ ]
consisting of (art , a

w
t ) = (a

r
∗, a

w
∗ ) for all t=1,2, · · · .

More specific assumptions regarding the structures of revenues, costs, and demand lead to explicit

solutions and comparative statics results. These assumptions correspond to an exogenous retail

price, a linear retail revenue function, and concavity of the mean demand as a function of the

retail supply level. In part (b) of the following result, dI denotes the right-hand derivative of d, and

setting dL(ar)/dar and ∂M(ar, aw)/∂aw to zero yields (16) and (17), respectively.
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Theorem 3. (a) The decentralized monopolistic supply chain game under expedited shipment

has an equilibrium point relative to [0, ar∗]× [0, aw∗ ] consisting of (art , awt ) = (ar∗, aw∗ ) for all t=1,2, · · · .
(b)If

(i) G1= pmin{ar1,D1}−hr(ar1−D1)
+

(ii) D1(a
r
1) = d(a

r
1) + ηt with η1,η2, · · · independent and identically distributed random variables

with mean zero and distribution function F (·),
(iii) d(·) concave and d(a)≤ d(a+ δ)<d(a)+ δ (0≤ a,0< δ),

then

ar∗ = d(a
r
∗)+F

−1
�p− cr(+(ρ+βcr)(1− dI)

(ρ+ p+ ρ)(1− dI)
=

(16)

aw∗ = a
r
∗+ d(a

r
∗)+F

−1
�hw+ cw(1−βw)

βwcw(λ− 1)
=

(17)

The assumptions regarding expected demand as a function of supply level, d(·), imply that the
right-hand derivative satisfies 0≤ dI(a)< 1. The hypothesis of part (b) is presumed throughout the
remainder of this section.

From (16) and (17), the chain members should set their target supply levels by considering

the inventory effect on demand. However, the degree of this effect differs for the retailer and the

wholesaler. The second term of (17) depends on several parameters but it does not depend on d(·)
because the wholesaler should set a supply level such that her expected overstock cost equals her

expected shortage cost and these costs depend only on the parameters in the second term and F (·).
However, dI appears in the second term of (16) because the retailer should adjust his inventory

both for the deterministic part of demand (d) and for the random part of demand. His inventory

level affects demand and, consequently, his profits.

The numerator of (17), cw(λβw−1)−hw, is the wholesaler’s unit shortage cost, while the denom-
inator, βwc

w(λ−1), which can be rewritten as [(βwλ−1)cw−hw]+ [cw(1−βw)+hw], is the sum of

the unit shortage cost and the unit overstocking cost. Hence, the wholesaler should set her echelon

base-stock level as if she were an independent dynamic newsvendor.

We now characterize the dependence of echelon base-stock levels on cost and revenue parame-

ters. We say “increasing” and “decreasing” for nondecreasing and nonincreasing, respectively. The

results are summarized as follows.

Proposition 1. The retailer’s target supply level ar∗ increases as as p or α increase, it decreases

as cr increases, and if d(x + δ) ≤ d(x) + δ(δ > 0), then it also increases as hr decreases or βr

increases. The wholesaler’s target echelon level aw∗ increases as λ, c
w or ar increase or as hw or cr

decrease. If λ< 2, then aw∗ increases as βw increases.
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Proof. Under the assumptions in Theorem 3(b), L(·), d(·) and M(·, ·) are concave, so their
derivatives from the right exist.

∂2L(ar)

∂p∂ar
= 1− [1− dI(ar)]F [ar− d(ar)]≥ 0

∂2L(ar)

∂cr∂ar
=−βrdI(ar)− (1−βr)≤ 0

∂2L(ar)

∂aw∂ar
= 0

If d(x+ δ)≤ d(x)+ δ(δ > 0), then dI(ar)≤ 1 and
∂2L(ar)

∂α∂ar
= ρ[1− dI(ar)]+ dI(ar)ρ≥ 0

∂2L(ar)

∂hr∂ar
= −[1− dI(a)]F [ar− d(ar)]≤ 0

∂2L(ar)

∂βr∂ar
= cr[1− dI(ar)]≥ 0

Also,

∂2M(ar, aw)

∂hw∂aw
=−1< 0

∂2M(ar, aw)

∂λ∂aw
= βwc

w[1−F (aw−ar− d(ar))]≥ 0
∂2M(ar, aw)

∂βw∂aw
= cw(2−λ){1−F [aw−ar− d(ar)]}≥ 0

∂2M(ar, aw)

∂ar∂aw
= βwc

w(λ− 1)∂F [aw− ar− d(ar)]/∂ar ≥ 0
∂2M(ar, aw)

∂cr∂aw
=0

∂2M(ar, aw)

∂aw∂cw
=−(1−βw)−βw(λ− 1)F [aw− ar− d(ar)]≤ 0

The assumption d(x + δ) < d(x) + δ(δ > 0) means that a unit increase in inventory induces

an increase of less than one unit of demand. When p, α or βr increase, the retailer’s expected

backorder costs increase, so he should raise his base-stock level. Conversely, when cr or hr increase,

his expected holding costs increase, so he should lower his base-stock level. Similarly, when λ or α

increase, the wholesaler should raise her echelon base-stock level to reduce the expected backorder

cost. If expediting is not too expensive λ< 2, then the wholesaler should increases aw∗ as βw increases

to reduced the expected backorder cost. Conversely, she should lower her echelon base-stock level

to reduce the expected inventory cost when cw or hw increase. We note that because aw∗ increases as

ar∗ increases, and a
r
∗ decreases as c

rincreases, aw∗ decreases as c
r increases. This means that knowing

that the retailer will lower his supply level if she raises the wholesale price, the wholesaler lowers

her echelon supply level accordingly.
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4.3. Pricing and Inventory Games

Since the wholesaler expedites any inventory shortfalls, the retailer always obtains the quantity that

he orders. That is, the wholesaler’s inventory policy does not influence him directly (∂L/(∂ar∂aw) =

0). However, the price that the wholesaler charges the retailer certainly does affect the retailer.

Proposition 1 asserts that the retailer should lower his base-stock level when the wholesale price

increases. Since wholesale price is a vital element of contracts between wholesalers and retailers,

in this subsection we enlarge the dynamic game to include the wholesale price decision by the

wholesaler.

The enlarged model has two stages. At the first stage, the wholesaler fixes the wholesale price,

cr, which remains constant thereafter. At the second stage, the retailer and wholesaler play the

infinite-horizon game described in §4.2. However, expediting implies that the retailer optimizes
without regard to the inventory choices made by the wholesaler. If the wholesaler chooses wholesale

price cr at the first stage, let ar∗(c
r) make explicit the dependence of an optimal ar on cr in (7).

Anticipating this choice by the retailer, the wholesaler’s second-stage decisions are selected to

maximize (14), i.e., the wholesaler selects aw to maximizeM [ar∗(c
r), aw] subject to aw ≥ ar∗(cr). Let

aw∗ (c
r) be a maximizing value of aw. It follows from (14) that the wholesaler’s first-stage problem

is to choose cr to maximize

M [ar∗(c
r), aw]/(1−βw)− (λ− 1)cw(ar∗− sw1 )+cr− sr1+ cwsw1

The assumptions in Theorem 3(b) lead to a characterization of the resulting wholesale price.

Theorem 4. Under the hypothesis of Theorem 3(b), there is a pure strategy equilibrium point

relative to [0, ar∗]× [0, aw∗ ] for the dynamic game preceded by the pricing decision in which the retailer
and wholesaler employ echelon base-stock policies, and the wholesale price satisfies

cr∗ = c
w+

(hw+ cw−βwcw)dI(ar∗)
βwdI(ar∗)+ 1−βw

+
(sr1− ar∗)(1−βw)−βwd(ar∗)
ar∗ [βwdI(ar∗)+ 1−βw]

(18)

Setting the derivative of (14) with respect to cr to zero yields (18). From (18), the equilibrium

wholesale price does not depend on the unit expediting cost but depends only on the wholesaler’s

purchasing cost and holding cost, βw, demand’s marginal rate in inventory, the sensitivity of the

retailer’s target supply level to the wholesaler price, and the retailer’s initial inventory!

We now characterize the impacts of cw, hw, , sr1 and βw on cr∗. A proof similar to that of

Proposition 1 establishes the following result.

Proposition 2. The equilibrium point wholesale price, cr∗, increases as c
w or hw increases, and

decreases as βw increases.
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Proposition 2 indicates that the wholesaler passes her higher purchasing and holding costs on to

the retailer by raising the wholesale price. This transfer enhances “double marginalization”, the

phenomenon that a decentralized retailer often sets a lower base-stock level than a centralized

decision maker would select. A smaller discount factor βw makes the present more valuable than

the future; therefore, the wholesaler raises the wholesale price. Higher sr1 means that the retailer

buys less in the first period, so the wholesaler increases the wholesale price.

5. Dynamic Competition Between Decentralized Supply Chains

This section studies dynamic inventory competition between two decentralized supply chains. We

continue to assume that the wholesalers expedite orders to the retailers at unit cost λic
w
i (λi > 1)

when they are out of stock.

It follows from (7) and the proof of Theorem 3 that the two retailers play an infinite horizon

game having an embedded strategic game in which the payoffs to the retailers one and two, when

retailers one and two select respective supply levels a and b, is

L1(a, b) = E{G11 − ρ1[a−D1
1(a, b)]

+− (ρ1+βr1cr1)D1
1(a, b)}− cr1(1−βr1)a

L2(a, b) = E{G21 − ρ2[b−D2
1(a, b)]

+− (ρ2+βr2c
r
2)D

2
1(a, b)}− cr2(1−βr2)b

Each retailer’s decision is affected directly by the other retailer because each one’s demand depends

on both retailers’ supply levels. The concavity of L1(·, b) and L2(a, ·) and the result in Debreu
(1952) imply that the retailers’ imbedded game has an equilibrium point relative to ×2i=1[0, ari∗ ]
consisting of (ar1t , a

r2
t ) = (a

r1
∗ , a

r2
∗ ) for all t=1,2, · · · .

Now we turn to the wholesalers. wholesaler one faces a Markov decision process with payoff

Mi(a
r1
∗ , a

r2
∗ , a

wi)/(1−βwi)+λi− 1)cwi (ari∗ − swi1 )+− cri sri1 + cwi swi1

where

Mi(a
r1
∗ ,a

r2
∗ , a

wi) = βwi(c
r
i − cwi )E[Di

1(a
r1
∗ , a

r2
∗ )]+ [h

w
i + c

r
i (1−βwi)]ari∗ − [hwi

+ cwi (1−βwi)]awi−βwicwi (λi− 1)E[ari∗ −awi+ d(ar1∗ , ar2∗ )+ ηi]
+

(19)

for i= 1,2. Above equation has the same form as (15) with ar replaced by (ar1∗ , a
r2
∗ ). We observe

that the retailers’ decisions directly affect the wholesalers, but the wholesalers do not interact with

each other. The concavity of Mi(·, ·, awi) ensures the existence of awi∗ ∈ argmaxMi(a
r1
∗ , a

r2
∗ , a

wi) for

i= 1,2. In summary, the dynamic decentralized supply chain game with payoffs defined by (9) and

(14) has an equilibrium point relative to ×2i=1[0, ari∗ ]× [0, awi∗ ] consisting of (arit , awit ) = (ari∗ , awi∗ ) for
all t= 1,2, · · · . More specific assumptions regarding the structures of revenues, costs and demand
lead to an explicit solution and comparative results. Let dii = ∂di(a

r1, ar2)/∂ari (i = 1,2). The

results are summarized as follows.
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Theorem 5. (a) If E(Git) is concave in arit and E(Di
t)is concave in a

ri
t , i = 1,2, then the

decentralized supply chain game under expedited shipment has an equilibrium point relative to

×2i=1[0, ari∗ ]× [0, awi∗ ] consisting of (arit , awit ) = (ari∗ , awi∗ ) for all t= 1,2, · · · .
(b) If

(i) Gi1= pimin{Di
1(a

r
1), a

ri
1 }+hri (ari1 −Di

1)
+

(ii) Di
t(a

1, a2) = di(a
1, a2) + ηit with ηi1, ηi2, · · · independent and identically distributed random

variables with mean zero and distribution function Fi(·),
(iii) d1(·, a2) and d2(a1, ·) increasing and concave,

then,

ari∗ = di(a
r1
∗ , a

r2
∗ )]+F

−1
i

� ρi− cri (1−βi)
(ρi+hri )(1− dii)

+
(pi− ρi−βicri )dii
(ρi+hri )(1− dii)

=
(20)

awi∗ = ari∗ + di(a
r1
∗ , a

r2
∗ )+F

−1
i

�hwi + cwi (1−βwi)
βwicwi (λi− 1)

=
(21)

(c) As cri , βri, or h
r
i increase, or as c

r
j or ρj decrease, a

ri
∗ decreases (i= 1,2; i W= j).

The hypothesis in part(a) of Theorem 5 are sufficient for the concavity of L1(a, ·) and L2(·, b) on
their domains.

We note that expediting is essential for the existence of equilibrium points of the decentralized

supply chain game. Without the expediting feature, the argument in §3 leads to the conclusion that
competing decentralized multi-echelon supply chains generally lack equilibrium points in echelon

base-stock policies.

6. Conclusions and Questions

Since Clark and Scarf (1960), sufficient conditions have been known for an echelon base-stock policy

to be optimal in a monopolistic centralized supply chain. When these same conditions are applied to

competing centralized chains, the class of echelon base-stock policies does not generally contain an

equilibrium point. The negative result persists if a centralized chain competes with a decentralized

one. Consequently, it is not clear whether a first-mover advantage accrues to the supply chain that

invests first in coordination. In addition, it is unclear whether costless coordination is profitable

if the competitor chain is centralized. Since we assume that the chains compete through product

availability, and that the firms’ revenues are functions of goods supply level, perhaps specific forms

of the revenue functions Gi could lead to answers to these questions.
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