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Abstract

This paper investigates how airlines might determine their network structures through a

three-stage duopoly game in which two airlines serve a three-city network under demand

uncertainty. At the first stage, the airlines choose their network structures; at the second

stage, while route demands are still uncertain, they construct capacities; at the third stage,

after demands are known, they allocate seats to each route given capacity constraints imposed

by the second stage decision.

We characterize a subgame perfect equilibrium in the capacity and quantity games and

show that at equilibrium, either both airlines use hub-and-spoke networks, or both use

point-to-point networks. We also identify critical factors that determine airlines’ network

choices. Even if fixed investment costs are ignored, a hub-and-spoke network does not

necessarily dominate a point-to-point network. However, a high demand variance or a low

mean demand generally favors a hub-and-spoke network. This paper sheds some lights into

the success of low-cost carriers exemplified by Southwest.

(Nonlinear programming, Hub-and-Spoke, Point-to-Point, Economies of density, Flexi-

bility)
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1. Introduction

During the first ten years of U.S. airline deregulation (in the 1980s), major airlines (e.g.,

Northwest) shifted dramatically from point-to-point networks to hub-and-spoke networks.

Hub-and-spoke networks not only create economies of density by flying passengers from

different cities to and from a few hub cities but also yield higher flight frequency and broader

geographic coverage. The role of traffic density in the airline industry has been widely

studied both theoretically (Bailey, Graham and Kaplan (1985), Brueckner and Spiller (1991),

Hendricks, Picciione and Tan (1995a)) and empirically (Caves, Christensen and Tretheway

(1984), Brueckner, Dyer and Spiller (1992)).

However, some airlines moved back to point-to-point networks recently (e.g. Southwest).

The growing level of congestion at major hub airports in the 1980s created opportunities for

low-fare, no-frills, and point-to-point services exemplified by Southwest airline. Shunning

congested airports and direct competition with major airlines, low-cost carriers carved out a

thriving market niche by reviving point-to-point services. In response, several major airlines

(Continental, Delta, United, and US Airways) created subsidiaries offering similar services

using a single type of aircraft (to reduced aircraft maintenance costs) and lower-paid crews.

Major airlines are now experiencing financial difficulties: US Airways filed for bank-

ruptcy for a second time, and Delta is near bankruptcy. Excess capacity, cut-throat com-

petition, oil price surges, powerful labor unions, and terrorist threats contributed to this

situation. Carey and McCartney (2004) suggest that major airlines should de-emphasize

hub-and-spoke networks and add direct flights between non-hub cities following the low-cost

carriers’ strategy.

This paper investigates how airlines might determine their network structures through a

three-stage duopoly game in which two airlines serve a three-city network under demand un-

certainty. At the first stage, the airlines choose their network structures; at the second stage,

while route demands are still uncertain, they construct capacities; at the third stage, after

demands are known, they allocate seats and flights to each route given capacity constraints

imposed by the second stage decision.
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Besides economies of traffic density, a hub-and-spoke network provides an airline the

flexibility of allocating capacities among markets after uncertainty is resolved. Hence, if

a hub-and-spoke network does not incur excess extra investment costs in the hub, it might

seem to be a better choice than a point-to-point network for a monopolistic airline. However,

we show later in §4 that this intuition could be wrong.
We address the following questions:

• Is a hub-and-spoke network always better than a point-to-point network? If not, when
is it dominated by a point-to-point network?

• Under what conditions are there subgame perfect equilibrium points for the three-stage
duopoly game? What are the equilibrium network structures?

There is a stream of papers by economists studying network selection and strategic in-

teractions between airlines. Oum, Zhang and Zhang (1995) study a duopoly model with

three cities. Considering economies of density which affect both costs and demand, they

show that strategic interaction reinforces the tendency towards hubbing because hubbing

reduces airlines’ marginal costs and increases product quality thus forcing their competitors

to cut output. The authors further show that even if hubbing increases total costs, strategic

considerations may lead airlines to adopt this network structure. However, hubbing causes

the prisoner’s dilemma: both airlines adopt hub-and-spoke networks, but the competitive

advantage cancels out, so both may be worse off. Hendricks, Picciione and Tan (1995b) iden-

tify conditions under which an equilibrium point with competing hub-and-spoke networks

exists for an n-city network. Barla (1999) studies a three-stage duopoly game in which the

airlines have different hubs but the same non-hub cities thus competing only on the non-hub

route. He concludes that the airlines determine their network structures through balancing

the flexibility value versus the committed advantage in the non-hub route. In contrast, we

assume that the airlines compete across a collection of three cities of which one is a hub city.

The rest of the paper is organized as follows. §2 presents the model. §3 characterizes a
subgame perfect equilibrium point in the quantity and capacity games for all possible cases:
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Figure 1: A Three-City Network

both airlines employ hub-and-spoke networks, both airlines employ point-to-point networks,

and they employ different network structures. §4 studies the network game and identifies
factors that determine the airlines’ network structures. §5 concludes the paper.

2. Model and Assumptions

Two risk-neutral airlines compete across a collection of three cities: a hub city H and two

non-hub cities, A and B (Figure1). Markets AH and BH are addressed as the local markets

and AB as the connecting market. A passenger travelling from A to B has to take two flights,

AH and HB, if he or she flies with a hub-and-spoke network, but the same passenger take

only one flight (AB) with a point-to-point network. We assume that the markets from and

to the hub city are identical, i.e., markets AH and BH have a common demand function. We

also assume that all three markets AH, BH, and AB are bidirectionally symmetric, e.g.,

traffic from A to B has the same characteristics as the traffic from B to A. As a result, the

third-stage game is a two-product Cournot competition, that is, the airlines compete for

the connecting and local passengers. Relaxing above two symmetric assumptions adds the

number of markets but will not change the qualitative results.

If an airline has chosen a hub-and-spoke network at the first stage, then at the second

stage while demands are still unknown, it decides on the aggregate capacity ( e.g., aircraft

size and maximum number of flights to offer per week) for the local and connecting markets;

if it has chosen a point-to-point network initially, then it chooses capacities for the local and

connecting markets, respectively. At the third stage, after demands are known, the airline
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allocates seats between the local and connecting markets if it has chosen a hub-and-spoke

network. If it has chosen a point-to-point network, it simply determines upon the number of

seats and flights to offer in each market subject to the capacities. Each stage in the model

is a simultaneous-move non-cooperative game with complete information.

Let ch and cp be the unit capacity costs, respectively, of a hub-and-spoke network and of

a point-to-point network, qyi be the number of seats that airline i offers in market y, and py

be the ticket price for market y. We note that some of the results might change if an economy

of scale is considered for the capacity cost. Demands for the origin-destination pairs (AH,

BH, AB) are independent random variables. We assumed a linear inverse demand function

py =My − (qy1 + qy2) (y = l, c; l represents the local markets and c the connecting market).
Random variable My is nonnegative and has a mean μy and a variance σ

2
y with distribution

function Fy(·). The qualitative results would remain valid if a more general demand function
were used.

We assume that a connecting passenger cannot be accommodated through the hub if

he or she chooses to fly through a point-to-point network. Hence, a hub-and-spoke network

provides an airline the flexibility of allocating capacities between the local and connecting

markets after demands are known, but a point-to-point network does not. In addition, we

assume that connecting passengers are prevented from arbitrages, i.e., they have to buy

a single ticket AB instead of two separate tickets AH and HB. The airlines can enforce

such a policy simply by checking passengers’ destination cities on their boarding passes.

Furthermore, for expository simplicity we examine only the cases in which the realization

of markets satisfies Mc ≤ Ml, a sufficient condition for pc ≤ 2pl thus eliminating arbitrage
opportunities. This simplicity is justified since hub cities usually attract heavier traffic than

non-hub cities. We assume ch ≤ μy and cp ≤ μy so that the airlines make profits. The

variable costs are assumed to be zero because airlines’ operating costs are mostly associated

with offering a seat rather than serving a passenger (Barla (1999)).

Network adjustment is infrequent in the airline industry especially when one of the

endpoint airports is congested and gates and landing slots are hard to obtain. Capacity

4



P

H

PH

P

H

PH

1 2,Π Π

1 2,Π Π

1 2,Π Π

1 2,Π Π

Airline Two

Airline O
ne

Figure 2: Three-Stage Duopoly Game

investment is also a long-term decision. However, quantity, number of seats to offer, is more

flexible (e.g., airlines can adjust number of flights to offer depending on market realization).

Let airline one be the row-player and airline two be the column player, H denote a hub-

and-spoke network and P a point-to-point network, and Πi represent airline i’s net profit.

Three cases are possible: both airlines use hub-and-spoke networks, both airlines use point-

to-point networks, and they use different networks. Figure 2 represents the game by a 2× 2
matrix.

Let πi represent airline i’s profit in the Cournot competition. We assume that the

capacities are finite. Let Ki denote the capacity on either leg when airline i uses a hub-

and-spoke network, and Kyi be airline i’s capacity in market y when it uses a point-to-point

network.
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Figure 3: Capacity and Quantity Optimization

Working backward, we first obtain equilibrium quantities in the Cournot game, then the

capacity competition, and finally the network structure game.

At the third stage, given their rival’s network structures and capacities, the airlines en-
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gage in the quantity game after demand realization. Specifically, the airlines choose numbers

of seats qli and qci to maximize their expected payoffs (π1, π2) given capacity constraints im-

posed by the second stage decision and their network structures. For example, when airline

one uses a hub-and-spoke network and airline two uses a point-to-point network, airline one’s

problem is

maxql1,qc1π1 = 2plql1 + pcqc1

= 2[Ml − (ql1 + ql2)]ql1 + [Mc − (qc1 + qc2)]qc1
s.t. ql1 + qc1 ≤ K1 (1)

0 ≤ ql1 0 ≤ qc1

Similarly, airline two’s problem is

maxql2,qc2π2 = 2plql2 + pcqc2

= 2[Ml − (ql1 + ql2)]ql2 + [Mc − (qc1 + qc2)]qc2 (2)

s.t. 0 ≤ ql2 ≤ Kl2 0 ≤ qc2 ≤ Kc2

At the second stage, in the capacity game the airlines determine their capacities with payoffs

(Π1,Π2), given their network structures. Continuing the example above, airline one’s problem

is
maxK1Π1 = Eπ1 − 2chK1 (3)

and airline two’s problem is

maxKl2,Kc2Π2 = Eπ2 − cp(2Kl2 +Kc2) (4)

Figure 3 summarizes airline one’s capacity and quantity optimization problems given its

network structure. Finally, at the first stage, given its rival’s network structure, airline i

selects its network structure depending on the expected payoff Πi.

3. Quantity and Capacity Games

We now characterize a subgame perfect equilibrium point in the quantity and capacity games.

In this section we assume that the airlines do not necessarily deplete their capacities, so the

quantity and capacity games are different. Because the calculations are tedious and lengthy,
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we attach the details in Appendices A, B and C and outline the solutions and illustrate the

calculation through the case in which both airlines adopt hub-and-spoke networks.

3.1 Hub-and-Spoke Networks

Label the airlines so that K1 ≤ K2. For the quantity competition, the airlines’ problems are

defined as (1), a concave nonlinear maximization problem to which the Karush-Kuhn-Tucker

(KKT) conditions apply. For example, airline one’s KKT conditions are

2(Ml − 2ql1 − ql2)− u1 + vl1 = 0

vl1ql1 = 0

Mc − 2qc1 − qc2 − u1 + vc1 = 0

vc1qc1 = 0

u1(qc1 + ql1 −K1) = 0 (5)

qc1 + ql1 ≤ K1

u1, vl1, vc1 ≥ 0

qc1, ql1 ≥ 0

In (5), vl1 and vc1 are slack variables, and u1 is a Lagrange multiplier. The realization of

demands defines binding conditions of the capacities and the values of the Lagrange multiplier

and slack variables. There are six combinations of the variables that define the regions in

Figure 4. The equilibrium quantities can be derived by solving (5) and its analogues for

airline two for each region.

In area 1, neither airline is capacity-constrained; in area 2, only airline one is capacity-

constrained; in area 3, both airlines are capacity-constrained; in area 4, only airline one

is capacity-constrained, and it serves only the local markets; in area 5, both airlines are

capacity-constrained, and airline one serves only the local markets; in area 6, both airlines

are capacity-constrained and serve only the local markets; the connecting market is not

served. Areas 4, 5, or 6 occur when the local markets are significantly larger than the

connecting market.
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Figure 4: Hub-and-Spoke Networks

We now illustrate the procedure to calculate equilibrium quantities for some areas and

relegate the details to Appendix A. In area 3, since both airlines are capacity-constrained,

ui > 0 and vyi = 0 (i = 1, 2; y = c, l). Solving (5) and its analogues for airline two yields

qli = (2Ml −Mc + 3Ki)/9 qci = (Mc − 2Ml + 6Ki)/9

ui = 2(Mc +Ml − 2Ki −Kj)/3 > 0 (i W= j; i, j = 1, 2)

Similarly, in area 4, airline two is not capacity-constrained, so u2 = vc2 = vl2 = 0; airline one

serves only the local markets.

vc1 =Ml −Mc/2− 3K1 > 0 qc1 = 0 qc2 =Mc/2 ql1 = K1 ql2 = (Ml −K1)/2

The other areas can be analyzed similarly, and the details are in Appendix A. In summary,

the areas can be defined as follows:

∆1 = {(xl, xc) : xl + xc ≤ 3K1}
∆2 = {(xl, xc) : xl + xc ≥ 3K1, xl + xc ≤ K1 + 2K2, 2xl − xc ≤ 6K1}
∆3 = {(xl, xc) : xl + xc ≥ K1 + 2K2, 2xl − xc ≤ 6K1}
∆4 = {(xl, xc) : 2xl − xc ≥ 6K1, xl + xc ≥ K1 + 2K2}
∆5 = {(xl, xc) : 2xl − xc ≥ 6K1, 2xl − xc ≤ 2K1 + 4K2, xl + xc ≥ K1 + 2K2}
∆6 = {(xl, xc) : 2xl − xc ≥ 2K1 + 4K2}

Notice that (xl, xc) are restricted to the Northeastern quadrant. When the airlines have

identical capacities, areas 2, 4, and 5 disappear as shown in Figure 4(b). Note that Eπi in
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(3) or (4) is the sum of the product of the profit in each area and the probability of that

area.

Having solved the quantity game, we now characterize an equilibrium point of the ca-

pacity game. The proof of the next result is in Appendix A.

Proposition 1. When both airlines employ hub-and-spoke networks, the capacity game has

a pure strategy equilibrium point. Furthermore, if K1 = K2 = K, the equilibrium point is

unique, and K satisfies

1

3 ∆3

(xl + xc − 3K)dFldFc + 2
∆6

(xl − 3K)dFldFc = ch (6)

3.3 Point-to-Point Networks

This section studies the quantity and capacity games when both airlines use point-to-point

networks. We assume that one airline has larger capacities than the other in all routes. There

are other cases (e.g., one airline has larger capacity in one market but smaller capacity in

the other market than the other airline). However, as we focus on the symmetric case in the

succeeding sections, this assumption is only for expository convenience. Label the airlines so

Ky2 ≥ Ky1 (y = l, c). Figure 5(a) shows nine areas that are defined by the binding conditions

of the capacities.

The quantity game can be solved for each area as illustrated in §3.2. The details are
in Appendix B. In area 1, neither airline is capacity-constrained; in area 2, airline one is

capacity-constrained in the connecting market; in area 3, airline one is capacity-constrained

in all markets; in area 4, airline one is capacity-constrained in the local markets; in area 5,

both airlines are capacity-constrained in the local markets; in area 6, airline one is capacity-

constrained in all markets, and airline two is capacity-constrained in the local markets; in

area 7, both airlines are capacity-constrained in the connecting market; in area 8, airline

one is capacity-constrained in all markets, and airline two is capacity-constrained in the

connecting market; in area 9, both airlines are capacity-constrained in all markets. For

the same reason as in the proof of Proposition 1, the capacity game has a pure strategy

equilibrium point. The proof of the following result is relegated to Appendix B.
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Figure 5: Point-to-Point Networks

Proposition 2. When both airlines adopt point-to-point networks, the capacity game has a

pure strategy equilibrium point. If Ky1 = Ky2 = Ky (y = l, c), the equilibrium point is unique

and Kc and Kl satisfy

∆7,9

(xc − 3Kc)dFldFc = cp (7)

∆5,9

(xl − 3Kl)dFldFc = cp (8)

3.4 Different Network Structures

Let airline one employ a hub-and-spoke network and airline two a point-to-point network.

Figure 6(a) represents the case in which K1 > Ky2(y = l, c). Note that there are other

cases (e.g., Kl2 > K1 > Kc2), so the capacity game might have multiple equilibria. Figure

6(a) shows nine areas that are defined by the binding conditions of the capacities. The

quantity game for each area can be solved explicitly. The details are in Appendix C. In

area 1, neither airline is capacity-constrained; in area 2, airline two is capacity-constrained

in the local markets; in area 3, airline two is capacity-constrained in the connecting market;

in area 4, airline one is capacity-constrained; in area 5, airline one is capacity-constrained,

and airline two is capacity-constrained in the local markets; in area 6, airline one is capacity-

constrained, and airline two is capacity-constrained in the connecting market; in area 7,

airline one is capacity-constrained and serves only the local markets where airline two is

capacity-constrained; in area 8, airline one is capacity-constrained and serves only the local

markets and airline two is capacity-constrained in all markets; in area 9, both airlines are
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capacity-constrained in all markets.

A proof (attached in Appendix C) that is similar to those of Propositions 1 and 2

establishes the following result.

Proposition 3. When the airlines use different network structures, the capacity game has

a pure strategy equilibrium point which satisfies

ch =
1

3 ∆4

(xl + xc − 3K1)dFldFc +
2

11 ∆5

(2xc + 3xl − 6K1 − 3Kl2)dFldFc (9)

+
1

5 ∆6

(3xc + 2xl − 6K1 − 3Kl2)dFldFc + 2
∆7,8

(xl − 2K1 −Kl2)dFldFC

+
2

3 ∆9

(xc + xl − 2K1 −Kc2 −Kl2)dFldFc

cp =
∆2

(xl − 3Kl2)FldFc +
2

11 ∆5

(xc + 7xl − 3K1 − 18Kl2)dFdG (10)

+ 2
∆7,8

((xl − 2Kl2 −K)
1dFldFc +

1

3 ∆9

(4xl + xc − 2K1 −Kc2 − 10Kl2)dFldFc

cp =
1

5 ∆6

(4xc + xl − 3K1 − 9Kc2)dFldFc +
∆8

(xc − 2Kc2)dFldFc

+
1

6 ∆9

(5xc + 2xl − 4K1 − 11Kc2 − 2Kl2)dFldFc (11)

The equations in Propositions 1-3 provide little information about the subgame perfect

equilibrium points. In order to investigate the network structure game further, we make two

important assumptions in §4.
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4. Network Structure Game

Having analyzed the quantity and the capacity games, we address the two questions raised

in the introduction: what factors affect airlines’ network choices? What are the airlines’

network structures at equilibrium? §4.1 states two additional assumptions. Following the
logic of §3, §4.2 derives equilibrium capacities, prices, and profits for the three cases: both

airlines use hub-and-spoke networks, both use point-to-point networks, and they use different

network structures. §4.3 compares the cases. §4.4 investigates a monopolist’s network choice
and a duopoly network game when the two network structures have the same unit capacity

costs. Then §4.5 addresses the same questions when the unit capacity costs are different.
Henceforth, we assume that the airlines are identical, so the airline identity i is sup-

pressed.

4.1 Assumptions

As shown in §3, the quantity and capacity games have a subgame perfect equilibrium point.
However, the equilibrium capacities lack closed-forms. In order to analyze the network game,

we have to compare the profits. So we make the following assumptions.

Assumption 1. Both the local and connecting markets are always served by the airlines.

This assumption excludes the cases in which the local markets are so much larger than

the connecting market that serving the connecting market is uneconomical. Specifically,

when both airlines use hub-and-spoke networks, areas 4, 5, and 6 disappear in Figure 4(a),

and areas 7 and 8 disappear in Figure 6.

Assumption 2. If the airlines use a hub-and-spoke networks, qli + qci = Ki; if they use

point-to-point networks, qyi = Kyi (y = l, c; i = 1, 2).

Reflecting characteristics of the U.S. airline industry, this assumption forces the airlines

to deplete their capacities regardless of market realization. Because most expenses for a flight

occur at departure and landing, and the marginal cost of an passenger is minuscule (Barla

(1999)), it is beneficial for airlines to sell up to the maximum number of seats available per

12



flight even at a sub-optimal price. For example, because demands decreased dramatically

after September 11, U.S. airlines had to cut prices to fill more seats in the flights.

Assumptions 1 and 2 eliminate the complexity caused by different demand realization

and binding conditions of the capacities. Furthermore, the quantity and capacity games are

equivalent.

4.2 Equilibrium Capacities and Prices

Let superscripts h, p, and m represent, respectively: both airlines use hub-and-spoke net-

works, both airlines use point-to-point networks, and one airline uses a hub-and-spoke net-

work and the other a point-to-point network. The proof of the following result is relegated

to Appendix A.

Proposition 4. When both airlines employ hub-and-spoke networks, the capacity game has

a subgame perfect equilibrium point at which

(a) the optimal capacity is Kh = (μl + μc)/3− ch/2,
(b) the expected prices are phc = (μc + 2ch)/3 and p

h
l = (μl + ch)/3;

(c) the expected profit is

Πh = (4σ2l + σ2c )/27 + (2μ
2
l + μ2c)/9− 5ch(μl + μc)/9 + 2c

2
h/3 (12)

It can be verified that Kh ≥ 0 and Πh ≥ 0 because ch ≤ μl and ch ≤ μc by assumption.

For the remainder of the paper, we use “increase” and “decrease” for “nondecreasing”

and “nonincreasing”, respectively. From Proposition 4, it can be derived that the optimal

capacity increases as mean demands increase or the unit capacity cost decreases and that the

expected prices increase as the respective mean demand or the unit capacity cost increases.

Moreover, (12) indicates that the airlines’ expected profits increase if demand variances

increase, but they are not monotone in ch, μl, or μc.

We now study the case in which both airlines adopt point-to-point networks. The proof

of the following results is in Appendix B.

Proposition 5. When both airlines employ point-to-point networks, the capacity game has

a subgame perfect equilibrium point at which
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(a) the equilibrium capacities are Kp
y = (μy − cp)/3 (y = l, c);

(b) the expected prices are ppy = (μy + 2cp)/3;

(c) the expected profit is
Πp = (2μ2l + μ2c)/9− 2cp(2μl + μc)/9 + c

2
p/3 (13)

It can be verified similarly that Kp
y ≥ 0 and Πp ≥ 0 since cp ≤ μl and cp ≤ μc by

assumption. From Proposition 5, it can be verified that the monotonicity of capacities

and prices with respective to μy or ch are the same as that from Proposition 4. However,

demand variances no longer affect the expected profit. Furthermore, the expected profit

increases as either demand mean increases, or as the unit capacity cost decreases, whereas

this monotonicity does not exist when both airlines use hub-and-spoke networks.

Finally, we study the case in which the airlines employ different network structures. Let

subscripts h and p represent the airline’s network structures, and superscript m represent

the case. The results are summarized as follows, and its proof is attached in Appendix C.

Proposition 6. When the airlines employ different network structures, the capacity game

has a subgame perfect equilibrium point at which

(a) the optimal capacities are Km
h = (2μc + 2μl + 3cp − 6ch)/6 and Km

c = (μc + ch − 2cp)/3
and Km

l = (2μl + ch − 2cp)/6;
(b) the expected prices are pml = (2μl + cp + ch)/6 and p

m
c = [(μc + ch + cp)/3;

(c) the expected profits are

Πmh = (4σ
2
l + σ2c )/18 + [(2μ

2
l + μ2c)− (μl + μc)(7ch − 2cp)]/9 (14)

+ (10c2h + c
2
p − 7cpch)/6

Πmp = (2μ
2
l + μ2c)/9 + μl(2ch − 7cp)/9 + 2μc(ch − 2cp)/9− 5chcp/6 + c2h/6 + c2p (15)

From Proposition 6(a), it is straightforward to derive that the hubbing airline’s capacity

increases as either mean market increases, and the equilibrium capacities for the local and

connecting markets of the airline with a point-to-point network increase as the corresponding

mean market increases. Furthermore, if hubbing becomes more expensive, the airline with

a point-to-point network should raise its capacities, while the other airline should reduce its
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capacity and vice versa. The expected prices increase as the corresponding mean demands

increase, or as either unit capacity cost increases. Demand variances positively affect the

hubbing airline’s profit but has no impacts on the other airline’s profit. More interestingly,

comparing (14) and (12), one observe that demand variances have larger impacts on the

hubbing airline’s expected profit in this scenario than when both airlines adopt hub-and-

spoke networks because the flexibility value is shared by the airlines in the latter case.

Notice the wording in Propositions 4 to 6, “equilibrium capacity” and “ expected prices”.

Because capacities are determined before demands are known, so they are deterministic.

However, prices are determined after uncertainty is resolved, so actual prices depend on

demand realization. Therefore, “expected” is used to restrict “price”.

Table 1 summarizes each airline’s equilibrium capacities in the local and connecting mar-

kets at a subgame equilibrium point. Since the airlines deplete their capacities, the capacity

p h m

Local 2
3
(μl − cp) 1

3
(2μl − ch) 2

3
μl − 1

6
(cp + ch)

Connecting 2
3
(μc − cp) 2

3
(μc − ch) 2

3
μc − 1

3
(cp + ch)

Table 1: Equilibrium Capacities

decision and pricing decision are equivalent, and the orderings of prices and capacities are

opposite. The following results are immediate from Table 2 or Propositions 4 to 6.

Corollary 1. If ch > cp, then p
h
c > pmc > ppc. If ch > 3cp, then p

h
l > pml > ppl . If

2cp > ch > cp, then p
p
l > p

h
l > p

m
l . If 3cp > ch > 2cp, then p

m
l > p

p
l > p

h
l .

Corollary 1 claims that if a hub-and-spoke network is more expensive than a point-to-

point network, scenario h provides the lowest capacity thus the highest price in the connecting

market. However, if the unit capacity cost is the same regardless of the network structures,

then all three cases offer the same price and capacity for the connecting market. In reality,

low-cost carriers’ cost per mile seat could be 40% lower than that of a major hub-and-spoke

airline (Borenstein (1992)), so 2cp > ch > cp probably best reflects the reality. Hence,

from Corollary 1 local passengers benefit most from the airlines’ network differentiation.

15



Furthermore, if μl = μc, the total capacities of the local markets is larger than that of the

connecting market as long as at least one airline uses a hub-and-spoke network. Consequently,

local flights are cheaper than connecting flights.

4.3 Network Choice with Uniform Capacity Cost

This subsection studies the airlines’ equilibrium network structures when cp = ch = c. This

assumption is relaxed in §4.4.

4.3.1 Monopoly

As conjectured in §1, if fixed investment costs are ignored, a hub-and-spoke network might
seem to dominate a point-to-point network for a monopolist because it possesses a flexibility

value and economies of density. However, the following result shows that a monopolist might

favor a point-to-point network over a hub-and-spoke network.

Let ΠMp and ΠMh be a monopolistic airline’s expected profit when it uses a point-to-point

network and a hub-and-spoke network, respectively. Let ∆M = ΠMh −ΠMp . It can be verified
that optimal capacities are Ky = (μy−cp)/2 (y = l, c) if the monopolist uses a point-to-point
network, and Kh = (μc + μl − 3ch)/2 if it uses a hub-and-spoke network. So

ΠMp = (2μ2c + μ2l − 4μlcp − 2μccp + 3c2p)/4
ΠMh = [(σ2c + 2σ

2
l ) + (μc − 2ch)2 + 2(μl − ch)2]/4

∆M = (σ2c + 2σ
2
l − μ2c + μ2l + 6c

2
h − 3c2p − 4μcch + 2μccp − 4μlch + 4μlcp)/4 (16)

For expository simplicity, let σl = σc = σ and μl = μc = μ, then ∆M = (3c2 − 2μc+ 3σ2)/4.
Let c and c̄ are the respective smaller and larger roots of c by setting ∆M to zero. Then

c̄ = (μ + μ2 − 9σ2)/3 and c = (μ − μ2 − 9σ2)/3. So if σ/μ ≥ 3, ∆M > 0; otherwise, if

c ∈ (c, c̄), then ∆M < 0, and if c ∈ (0, c) ∪ (c̄,μ), then ∆M > 0. The results are summarized

as follows.

Proposition 7. (a) A monopolist uses a hub-and-spoke network if σ/μ ≥ 3. Otherwise, it
uses a hub-and-spoke network if c ∈ (c̄,μ) ∪ (0, c) and a point-to-point network if c ∈ (c, c̄);
(b) If μc increases, or if cp, σc , or σl decreases, ∆

M decreases.
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Proposition 7 reveals that only if the demand variation coefficient is larger than 3,

a monopolist favors a hub-and-spoke network. Otherwise, it might favor a point-to-point

network depending on the parameters. For an extreme case, if σ = 0, then ∆M = (3c2 −
2μc)/4. So if μ/c < 3/2, the airline should use a hub-and-spoke network and otherwise

a point-to-point network. Although a hub-and-spoke network has economies of density, it

requires one seat in each leg to transport a connecting passenger, so a monopolist does not

necessarily favor a hub-and-spoke network. When demand/cost ratio is greater than 3/2,

this capacity-costly disadvantage dominates economies of density. So a monopolist should

use a point-to-point network.

In addition, Proposition 7 implies that under the same market condition, a low-cost

airline is more likely to opt for a point-to-point network than a high-cost airline. This

coincides with the fact that all the prosperous U.S. direct flight airlines are low-cost. In

general a high demand variance or a low demand/ cost ratio favors a hub-and-spoke network.

4.3.2 Best Response

This subsection examines an airline’s best response given its rival’s network structure. We

first analyze the case in which the rival airline employs a hub-and-spoke network. Let ∆H

denote the profit gap of responding with a hub-and-spoke network versus a point-to-point

network. From (12) and (15),

∆H = Πh −Πmp = (σ2c + 4σ2l )/27 + (c2 − μcc)/3 (17)

Let c̄1 = {3μc + [9μ2c − 4(σ2c + 4σ2l )]1/2}/6 and c1 = {3μc − [9μ2c − 4(σ2c + 4σ2l )]1/2}/6.
Following the reasoning as for Proposition 7, if (18) holds, ∆H in (17) is nonnegative. So the

best response is a hub-and-spoke network; otherwise, the sign of ∆H depends on the value

of c: if c ∈ (c1, c̄1), ∆H > 0; if c ∈ (c1, c) ∪ (c̄1,μ), ∆H < 0. The consequence results are

summarized as follows.

Proposition 8. When its competitor employs a hub-and-spoke network, an airline’s best

response is a hub-and-spoke network if
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σ2c + 4σ
2
l

μc
≥ 3/2 (18)

Otherwise, the best response is a hub-and-spoke network if c ∈ (0, c1) ∪ (c̄1,μc) and a point-
to-point network if c ∈ (c1, c̄1).

From (17), it can be derived that as μc decreases, or as σl or σc increases, ∆
H increases.

A hub-and-spoke response enables the airline to share with the incumbent airline, a flexibility

value, (4σ2l +σ
2
c )/27. In contrast, a point-to-point response provides the airline a committed

position in the connecting market whose value depends on the size of the mean of the

connecting market. The airline chooses its network structure by weighing the flexibility

value and the committed value. Specifically, when (18) holds, the flexibility value is larger,

so it responds with a hub-and-spoke network. Otherwise, an intermediate capacity cost

favors a point-to-point response, while a low or high capacity cost favors a hub-and-spoke

response.

If σc = σl = σ, then c > c̄1 and c < c1, respectively, correspond to

μc/c− (μc/c)2 − 20/9(σ/c)2 > 2 (19)

μc/c+ (μc/c)2 − 20/9(σ/c)2 < 2 (20)

Inequalities (19) and (20) imply that if σ/c is higher than μc/c by a certain increment,

the best response is a hub-and-spoke network and otherwise a point-to-point network. So

the airline determines its network structure through weighing μc/c versus σ/c, or roughly

speaking, the commitment value and the flexibility value. One extreme case is σc = σl = 0.

Then ∆H = (c2 − μcc)/3 ≤ 0 because μc ≥ c by assumption. So an airline should respond
with a point-to-point network without uncertainty. The flexibility value diminishes without

uncertainty, and economies of density cancel out if the airline responds with a hub-and-spoke

network. Therefore, by responding with a point-to-point network, the airline improves its

profit. In addition, if μc/c < (>)2, ∆
H increases (decreases) as c increases because a hub-

and-spoke’s economies of density dominate its cost disadvantage when demand/cost ratio is
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low. In summary, the demand/cost ratio affects the airline’s network choice similarly in a

duopoly case as in a monopoly case.

We now consider the airline’s best response when its competitor uses a point-to-point

network. Let ∆P be the profit gap of responding with a hub-and-spoke network versus a

point-to-point network. From (13) and (14),

∆P = Πmh −Πp = c2/3− c(μl + 3μc)/9 + (σ2c + 4σ2l )/18 (21)

Let c2 = {μl + 3μc − [(μl + 3μc)2 − 6(4σ2l + σ2c )]
1/2}/6 and c̄2 = {μl + 3μc + [(μl + 3μc)2 −

6(σ2c + 4σ
2
l )]

1/2}/6. Similarly, following the same reasoning as for Propositions 7 and 8, the
results below are consequences of (21).

Proposition 9. When its competitor employs a point-to-point network, an airline’s best

response is a hub-and-spoke network if

σ2c + 4σ
2
l

μl + 3μc
>
√
6/6 (22)

Otherwise, the best response is a hub-and-spoke network if c ∈ (0, c2) ∪ (c̄2,μl) and a point-
to-point network if c ∈ (c2, c̄2).

From (21), ∆P increases (decreases) as σc or σl (μl or μc) increases. In addition, if

(μl + 3μc)/c ≤ (>)3, ∆P increases (decreases) as c increases. Comparing (22) to (18), one

observes that both μl and μc now affect the airline’s response when the incumbent uses a

point-to-point network. Moreover, (22) indicates that μc weights more than μl in determining

the airline’s response network.

Comparing Propositions 7 to 9, one observes that with or without competition, in gen-

eral, a high demand variation coefficient or an extremely high or low unit capacity cost favors

a hub-and-spoke network, but an intermediate capacity cost favors a point-to-point network.

4.3.3 Equilibrium Network Structures

Before analyzing the network game, we first compare the airline’s expected profits in the

three cases. From Propositions 4 to 6,

Πh −Πmh = −(σ2c + 4σ2l )/54 ≤ 0 Πp −Πmp = cμl/9 > 0
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So the following results are immediate.

Proposition 10. Πp > Πmp ; Π
m
h ≥ Πh.

Proposition 10 reveals that a hubbing airline prefers its rival to use a point-to-point

network, while an airline with a point-to-point network prefers its rival to use the same kind

of network. These results are intuitive. When the airlines use different network structures,

the hubbing airline enjoys not only the flexibility value but also the economies of density thus

forcing the other airline to cut capacities. Consequently, the hubbing airline benefits if its

rival uses a point-to-point network. For the same reason, if both airlines use point-to-point

networks initially, as soon as one of them switches to a hub-and-spoke network, the other

suffers. The ordering of the other pairs of expected profits depends on the parameters and

demand characteristics.

We now analyze the network game. Let H and P denote a hub-and-spoke network and a

point-to-point network, respectively, and let NEP stand for pure strategy Nash equilibrium

point. The following result concerns the case in which σl = σc = σ and μl = μc = μ, and its

proof is in Appendix D.

Proposition 11. The network game is characterized as follows:

(a) if σ/μ > 2
√
30/15, (H,H) is the NEP,

(b) if 3
√
5/10 < σ/μ < 2

√
30/15, and

(i) if c ∈ (0, c2) ∪ (c̄2,μ), then (H,H) is the NEP,
(ii) if c ∈ (c2, c̄2), then (H,H) and (P, P ) are the NEPs;

(c) if σ/μ < 3
√
5/10, then

(i) if c ∈ (0, c2) ∪ (c̄2,μ), then (H,H) is the NEP,
(ii) if c ∈ (c1, c̄1), then (P, P ) is the NEP,
(iii) if c ∈ (c2, c1) ∪ (c̄1, c̄2), (H,H) and (P, P ) are the NEPs.

Proposition 11 concludes that the airlines adopt the same kind of networks at equilib-

rium. Specifically, for a high demand variation coefficient, both airlines choose hub-and-spoke

networks; for an intermediate or low demand variation coefficient, two cases are possible:
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either both airlines choose hub-and-spoke networks, or both airlines choose hub-and-spoke

networks. Note that in reality, airlines’ networks are much more complicated, so the sym-

metric equilibrium conclusion of this ideal three-city model does not exclude the coexistence

of hub-and-spoke and point-to-point networks in reality.

4.4 Network Choice with Different Unit Capacity Costs

A hub-and-spoke network incurs extra cost such as gaining landing slots and gates, handling

passengers’ packages in the hub, and coordinating flights. In addition, it contributes to

airport congestion and lowers aircraft usage because aircrafts arrive and depart at about the

same time for connecting passengers to take connecting flights. Moreover, in reality, low-cost

carriers usually have a lower cost per mile seat than major airlines. So we assume cp < ch.

4.4.1 Monopoly

The following results can be derived by computing the partial derivatives of ∆M with respect

to the corresponding parameters from (16).

Proposition 12. (a) As σl, σc, or μc decreases, or as cp increases, ∆
M increases; (b) If

(μl + μc)/ch ≥ (<)3, ∆M decreases (increases) as ch increases.

Comparing Propositions 12 and 7, one observes that the essence of the results do not

change when cp < ch: larger demand variances favor a hub-and-spoke network, whereas

larger market means favor a point-to-point network; if (μl + μc)/ch < 3, as ch increases, the

monopolist should tend to use a hub-and-spoke network because of its economies of density;

otherwise, economies of density are dominated by the capacity-costly factor, so a monopolist

should instead tend to choose a point-to-point network. In reality, there is an excess capacity

in airline industry, namely, (μl + μc)/ch is relatively small. Thus, loosely speaking, airlines

with dominant positions in their hubs should favor hub-and-spoke networks. This explains in

part why major airlines, whose costs are high relative to low-cost carriers such as Southwest,

favor hub-and-spoke networks.

In conclusion, the essence of the results does not change compared to the case with
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uniform capacity costs, so we here do not derive specific criterion for a monopolist’s network

selection.

4.4.2 Best Response

We now study an airline’s best response to a hubbing competitor. From (12) and (15),

∆H = Πh−Πmp = (4σ2l +σ2c )/27−7μl(ch−cp)/9−μc(7ch−4cp)/9+c2h/2+5chcp/6−c2p (23)

The following results follow by computing the partial derivatives of ∆H with respect to the

corresponding parameters.

Proposition 13. (a) As σl, σc, or cp increases, or as μc or μl decreases, ∆
H increases; (b)

∆H is submodular in ch and cp.

Proposition 13 claims that when there is a competing hubbing airline, the larger the

demand variances, or the smaller the mean demands, the less an airline should tend to

respond with a hub-and-spoke network. This monotonicity is not surprising because a hub-

and-spoke network’s flexibility value increases when demand variances increase, and because

economies of density are larger when mean demand is smaller. The submodularity of ∆H

means that the marginal increasing rate of ∆H in cp decreases as ch decreases.

We now consider the airline’s best response when its rival employs a point-to-point

network. From (13) and (14),

∆P = Πmh −Πp = 5(4σ2l +σ2c )/18−[7ch(μl+μc)−2cp(3μl+2μc)]/9+(10c2h−c2p−7chcp)/6 (24)

The following results are obtained by deriving partial derivatives of ∆P with respect to the

corresponding parameters.

Proposition 14. (a) As σl or σc increases, or as μl or μc decreases, ∆
P increases; (b) ∆P

is submodular in ch and cp.

Comparing (17) and (21) with (23) and (24), respectively, one observe that changing

ch = cp to ch > cp does not alter the qualitative results. So we here do not derive specific
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conditions that determine the airlines’ network structures at equilibrium. Nevertheless, the

submodularity of ∆p or ∆H in ch and cp captures the impacts of unit capacity costs on the

airlines’ network selection. The submodularity of ∆P means that the marginal decreasing

rate of ∆P in cp increases as ch decreases. Therefore, the lower its competing low-carrier’s

cost, the greater a hubbing airline’s profit deteriorates if it does not follow suit and switch

to a point-to-point network as well. So this partly explains major airlines’ response strategy,

creating airlines with airlines to match low-cost carriers’ business model.

5. Conclusion

This paper examines how airlines might determine their network structures through a three-

stage duopoly game in which two airlines serve a three-city network with uncertain demand.

We show that at equilibrium the airlines employ the same kind of networks. The monopoly

case is also investigated to exclude competition’s impacts on the airline’s network selection.

Even if fixed investment costs are ignored, we show that a hub-and-spoke network does not

necessarily dominate a point-to-point network. A larger demand variation coefficient or an

extreme high or low unit capacity cost generally favors hub-and-spoke networks whether

there is competition or not.

This paper sheds some lights into how demand, cost, and competition affect the air-

lines network selection and capacity investment and why low-cost carriers exemplified by

Southwest prospers. In reality, networks are much more complex, airlines use multiple types

of aircrafts, passengers are sensitive to flight quality such as number of stops and flight

frequency. Future research might consider these factors.
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Appendix A. Hub-and-Spoke Networks

Airline one’s problem at the third stage is

π1 = max
ql1,qc1

2[Ml − (ql1 + ql2)]ql1 + [Mc − (qc1 + qc2)]qc1 (25)

s.t. ql1 + qc1 ≤ K1 0 ≤ ql1 0 ≤ qc1
This is a concave nonlinear maximization problem which Karush-Kukh-Tucker (KKT) con-

dition applies. Airline one’s KKT conditions are

2(Ml − 2ql1 − ql2)− u1 + vl1 = 0

vl1ql1 = 0

Mc − 2qc1 − qc2 − u1 + vc1 = 0

vc1qc1 = 0 (26)

u1(qc1 + ql1 −K1) = 0

qc1 + ql1 ≤ K1

u1, vl1, vc1, qc1, ql1 ≥ 0

where vc1 and vl1 are slack variables, and u1 is a Lagrange multiplier. There are six areas

depending on the binding conditions of the capacities. The values of the slack variables

or multipliers are specified only when they are positive because they define the various

boundaries of the areas in Figure 4. The quantity game is solved for each area by taking

appropriate values of the Lagrange multipliers and the slack variables from (26) and the

analogues of airline two.

Neither airline is capacity-constrained (∆1)

qy1 = qy2 = Ay/3 y = l, c

Airline one is capacity-constrained; airline two is not (∆2)

qli = (2Ml−Mc− 3Ki)/9(i = 1, 2) qci = (4Mc+Ml− 3Ki)/9 u1 = (Ml+Mc)/3−K1 > 0

Both airlines are capacity-constrained (∆3)

qli = (2Ml −Mc + 3Ki)/9 qci = (Mc − 2Ml + 6Kj)/9

μi = 2(Mc +Ml − 2Ki −Kj)/3 > 0 (i W= j; i, j = 1, 2)

24



Airline one is capacity-constrained and serves only the local markets (∆4)

qc1 = 0 qc2 =Mc/2 ql1 = K1 ql2 = (Ml −K1)/2

u1 =Ml − 3K1 > 0 vc1 =Ml −Mc/2− 3K1 > 0

Both airlines are capacity-constrained; airline one serves only the local markets (∆5)

ql1 = K1 qc1 = 0 ql2 = (2Ml −Mc − 2K1 + 2K2)/6

qc2 = (Mc − 2Ml + 2K1 + 4K2)/6 vc1 = (2Ml −Mc − 6K1)/3 > 0

u1 = (Mc + 4Ml − 10K1 − 2K2)/3 > 0 u2 = 2(Mc +Ml −K1 − 2K2)/3 > 0

Both airlines are capacity-constrained and serve only the local markets (∆6)

qli = Ki qci = 0 ui = 2(Ml − 2Ki −Kj) > 0

vci = 2Ml −Mc − 4Ki − 2Kj > 0 (i, j = 1, 2; i W= j)

Proof of Proposition 1.

Proof. It can be verified that the airlines’ payoff functions Πi (i = 1, 2) are concave in their

own decision variable regardless of their rival’s decision. It follows from Debreu (1952) that

the capacity game has a pure strategy NEP. From (3), the first-order condition (FOC) of Πi

with respect to Ki in the capacity game is

E
∂πi
∂Ki

= 2ch (27)

Using Leibnitz’s rule to derive ∂πi/∂Ki for each area in Figure 4, for airline one, (27) becomes

1

3 ∆2

(xl + xc − 3K1)dFldFc +
2

3 ∆3

(xl + xc − 2K1 −K2)dFldFc

+
∆4

(xl − 3K1)dFldFc +
1

3 ∆5

(xc + 4xl − 10K1 − 2K2)dFldFc

+ 2
∆6

(xl − 2K1 −K2)dFldFc = ch

(28)

for airline two, (27) becomes

2

3 ∆3,5

(xl + xc −K1 − 2K2)dFldFc + 2
∆6

(xl −K1 − 2K2)dFldFc = ch (29)
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When the airlines have the same capacities, areas 4, 5, and 6 disappear, and (28) and (29)

can be simplified to (6).

The following condition is sufficient for uniqueness via contraction (Vives (1999)).

|∂2Πj/∂Ki∂Kj| < |∂2Πj/∂(Ki)
2| (i, j = 1, 2; i W= j) (30)

The second-order derivatives are

∂2Π2
∂(K2)2

=
4

3 ∆3

dFldFc + 4
∆6

dFldFc

∂2Π2
∂K1∂K2

=
2

3 ∆3

dFldFc + 2
∆6

dFldFc

So (30) holds.

Proof of Proposition 4.

Proof. Under Assumptions 1 and 2, area 3 takes the whole space in Figure 4, so ql =

(2Ml −Mc + 3K
h)/9, qc = (Mc − 2Ml + 6K

h)/9, and (6) becomes

ch = 2(μl + μc − 3Kh)/3 (31)

So Kh = (μl + μc)/3− ch/2, phc =Mc − 2qc, phl =Ml − 2ql and

Πh = 2phl ql + p
h
c qc − 2chKh

=
1

81 ∆

(7xc + 4xl − 12Kh)(xc − 2xl + 6Kh)

+ 2(5xl + 2xc − 6Kh)(2xl − xc + 3Kh) dFldFc − 2chKh

(32)

The result follows after some algebraic manipulations.

Appendix B Point-to-Point Networks

Airline one’s problem is

max
ql1,qc1

π1 = 2[Ml − (ql1 + ql2]ql1 + [Mc − (qc1 + qc2)]qc1 (33)

s.t. 0 ≤ qc1 ≤ Kc1 0 ≤ ql1 ≤ Kl1

The KKT conditions of (33) are
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2Ml − 4ql1 − 2ql2 − ul1 + vl1 = 0

ql1vl1 = 0

Mc − 2qc1 − qc2 − uc1 + vc1 = 0

vc1qc1 = 0

ul1(ql1 −Kl1) = 0 (34)

uc1(qc1 −Kc1) = 0

0 ≤ qc1 ≤ Kc1

0 ≤ ql1 ≤ Kl1

uc1, ul1, vc1, vl1 ≥ 0

The quantity game is solved for each area by taking appropriate values of the Lagrange

multipliers and the slack variables from (26) and its analogues for airline two.

Neither airline is capacity-constrained (∆1)

qyi = Ay/3

Airline one is capacity-constrained in the local markets (∆4)

ql1 = Kl1 qc1 = qc2 =Mc/3 ql2 = (Ml −Kl1)/2 ul1 =Ml − 3Kl1 > 0

Airline one is capacity-constrained in the connecting market (∆2)

qc1 = Kc1 qc2 = (Mc −Kc1)/2 ql1 = ql2 =Ml/3 uc1 = (Mc − 3Kc1)/2 > 0

Airline one is capacity-constrained in all markets (∆3)

qy1 = Ky1 qy2 = (Ay −Ky1)/2 uy1 = (Ay − 3Ky1)/2 > 0

Airline one is capacity-constrained in all markets and airline two is capacity-constrained in

local markets (∆6)

ql1 = Kl1 qc1 = Kc1 ql2 = Kl2 ul1 =Ml − 2Kl1 −Kl2 > 0

uc1 = (Mc − 3Kc1)/2 > 0 ul2 =Ml − 2Kl2 −Kl1 > 0
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Airline one is capacity-constrained in all markets and airline two is capacity-constrained in

the connecting market (∆8)

uc2 = (Mc − 3Kc1)/2 > 0 ul1 = (Ml − 3Kl1)/2 > 0

uc1 =Mc − 2Kc1 −Kc2 ql2 = (Ml −Kl1)/2

Both airlines are capacity-constrained in all markets (∆9)

qyi = K
p
yi uyi = Ay − 2Kyi −Kyj > 0 i, j = 1, 2; i W= j; y = l, c

Both airlines are capacity-constrained in the local markets (∆5)

ql1 = K
p
l1 ql2 = Kl2 qc1 = qc2 =Mc/3 uli =Ml − 2Kli −Klj > 0

Both airlines are capacity-constrained in the connecting market (∆7)

qc1 = Kc1 qc2 = Kc2 ql1 = ql2 =Mc/3 uci = Ay − 2Kci −Kcj > 0

Proof of Proposition 2

Proof. Following the same reasoning as in the proof of Proposition 1, for airline one, ∂Π1/∂Kc1 =

∂Eπ1/∂Kc1 − cp = 0 which translates into
cp =

1

2 ∆2,3,6

(xc − 3Kc1)dFldFc +
∆7,8,9

(xc − 2Kc1 −Kc2)dFcdFl (35)

Similarly, ∂Π1/∂Kl1 = ∂Eπ1/∂Kl1 − 2cp = 0 which translates into

cp =
∆4

(xl −Kl1)dFldFc +
1

2 ∆3,8

(xl − 3Kl1)dFldFc

+
∆5,6,9

(xl − 2Kl1 −Kl2)dFldFc (36)

Similarly for airline two, the FOC of Π2 w.r.t Kc2 and Kl2 yields, respectively.

1

2 ∆7

(xc − 3Kc1)dFLdFc +
∆8,9

(xc − 2Kc2 −Kc1)dFcdFl = cp (37)

∆5,6,9

(xl − 2Kl2 −Kl1)dFldFc = cp (38)

When the airlines have the same capacities, areas 2, 3, 4, 6 and 8 disappear, Figure 5(b)

shows the situation. As a result, (37) and (38) are simplified to (7) and (8), respectively.

Similar to the proof of Proposition 1, a sufficient condition for uniqueness is

28



∂2Πi
∂(Kyi)2

>
∂2Πi

∂Kyi∂Kyj
(y = c, l; i, j = 1, 2; i W= j) (39)

The second-order derivatives are

∂2Π1
∂(Kl1)2

= 2
∆5,9

dFldFc (40)

∂2Π1
∂Kl1∂Kl2

=
∆5,9

dFldFc (41)

So (39) holds.

Proof of Proposition 5

Proof. Under Assumptions 1 and 2, area 9 takes the whole space in Figure 5, so equations (7)

and (8) translate into μc− 3Kp
c = cp and μl− 3Kp

l = cp respectively. Thus K
p
y = (μy− cp)/3

for y = l, c. So ppy = (Ay + 2cp)/3

Πp = 2pplK
p
l + p

p
cK

p
c − cp(2Kp

l +K
p
c )

= 2(μl − 2Kp
l )K

p
l + (μc − 2Kp

c )K
p
c − cp(2Kp

l +K
p
c )

= (2μ2l + μ2c)/9− 2cp(2μl + μc)/9 + c
2
p/3

(42)

Appendix C Different Networks

Let airline one use a hub-and-spoke network and the other airline a point-to-point network.

Airline one’s problem is defined by (25) and the corresponding KKT conditions are defined by

(26). Airline two’s problem is the analogues of (33) and the corresponding KKT conditions

are the analogues of (34). The quantity game is solved for each area by taking appropriate

values of the Lagrange multipliers and slack variables.

Neither airline is capacity-constrained (∆1)

ql1 = ql2 =Ml/3 qc1 = qc2 =Mc/3

Airline two is capacity-constrained in the local markets (∆2)

ql1 = (Ml −Kl2)/2 ql2 = Kl2 qc1 = qc2 =Mc/3 μl2 =Ml − 3Kl2 > 0
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Airline two is capacity-constrained in the connecting market (∆3)

qc1 = (Mc −Kc2)/2 qc2 = Kc2 ql1 = ql2 =Mc/3 uc2 = (Mc − 3Kc2)/2 > 0

Only airline one is capacity-constrained (∆4)

qc1 = (Mc − 2Ml + 6K1)/9 qc2 = (4Mc +Ml − 3K1)/9

ql1 = (2Ml −Mc + 3K1)/9 ql2 = (Mc + 7Ml − 3K1)/18 u1 = (Mc +Ml − 3K1)/3 > 0

Airline one is capacity-constrained; airline two is capacity-constrained in the local markets

(∆5)

ql1 = (4Ml −Mc + 3K1 − 4Kl2)/11 qml2 = Kl2

qmc1 = (Mc − 4Ml + 8K1 + 4Kl2)/11 qc2 = (5Mc + 2Ml + 4K1 + 2Kl2)/11

u1 = 2(2Mc + 3Ml − 6K1 − 3Kl2)/11 > 0 ul2 = 2(Mc + 7Ml − 3K1 − 18Kl2)/11 > 0

Airline one is capacity-constrained; airline two is capacity-constrained in the connecting

market (∆6)

qc1 = (Mc −Ml + 3K1 −Kc2)/5 qc2 = Kc2

ql1 = (Ml −Mc + 2K1 +Kc2)/5 ql2 = (Mc + 4Ml − 2K1 −Kc2)/10

u1 = (3Mc + 2Ml − 6K1 − 3Kc2)/5 > 0 uc2 = (4Mc +Ml − 3K1 − 9Kc2)/5 > 0

Airline one is capacity-constrained and serves only the local market where airline two is

capacity-constrained (∆7)

ql1 = K1 qc1 = 0 ql2 = Kc2 qlc2 =Mc/2 ul2 = 2Ml − 4Kl2 − 2K1 > 0

u1 = 2Ml − 4K1 − 2Kl2 > 0 vc1 = (4Ml −Mc − 8K1 − 4Kl2)/2 > 0

Airline one is capacity-constrained and serves only the local markets; airline two is capacity-

constrained in all markets (∆8)

ql1 = K1 qc1 = 0 qc2 = Kc2 ql2 = Kl2

uc2 =Mc − 2Kc2 > 0 ul2 = 2Ml − 4Kl2 − 2K1 > 0

u1 = 2Ml − 4K1 − 2Kl2 > 0 vc1 = 2Ml −Mc − 4K1 − 2Kl2 +Kc2 > 0
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Both airlines are capacity-constrained in all markets (∆9)

ql2 = Kl2 ql1 = (2Ml −Mc + 2K1 +Kc2 − 2Kl2)/6

qc2 = Kc2 qc1 = (Mc − 2Ml + 4K1 −Kc2 + 2Kl2)/6

u1 = 2(Mc +Ml − 2k1 −Kc2 −Kl2)/3 > 0

uc2 = (5Mc + 2Ml − 4K1 − 11Kc2 − 2Kl2)/6 > 0

ul2 = (4Ml +Mc − 2K1 −Kc2 − 10Kl2)/3 > 0

Proof of Proposition 3.

Proof. For airline one, ∂Π1/∂K1 = E(∂π1/∂K1)− 2ch = 0, and E(∂π1/∂K1) can be derived

by summing the product of the first-order derivative of profit w.r.t K1 and the probability of

each area in Figure 6 using the Leibnitz rule. So the FOC of Π1 w.r.t K1 is E∂π1/∂K1 = 2ch,

which translates into

ch =
1

3 ∆4

(xl + xc − 3K1)dFldFc +
2

11 ∆5

(2xc + 3xl − 6K1 − 3Kl2)dFldFc

+
1

5 ∆6

(3xc + 2xl − 6K1 − 3Kl2)dFldFc + 2
∆7,8

(xl − 2K1 −Kl2)dFldFc

+
2

3 ∆9

(xc + xl − 2K1 −Kc2 −Kl2)dFldFc

For airline two, ∂Π2/∂Kl2 = ∂Eπ2/∂Kl2 − 2cp = 0, which can be changed into

cp =
∆2

(xl − 3Kl2)dFldFc +
2

11 ∆5

(xc + 7xl − 3K1 − 18Kl2)dFldFc

+ 2
∆7,8

((xl − 2Kl2 −K1)dFldFc +
1

3 ∆9

(4xl + xc − 2K1 −Kc2 − 10Kl2)dFldFc

similarly, ∂Π2/∂Kc2 = ∂Eπ2/∂Kc2 − cp = 0, which is equivalent to

ch =
1

5 ∆6

(4xc + xl − 3K1 − 9Kc2)dFdG+
∆8

(xc − 2Kc2)dFldFc

+
1

6 ∆9

(5xc + 2xl − 4K1 − 11Kc2 − 2Kl2)dFldFc

Proof of Proposition 6.
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Proof. Under Assumptions 1 and 2, area 9 takes the whole space in Figure 6. So (9), (10),

and (11), respectively, become

ch = 2(μl + μc − 2Km
h −Km

c −Km
l )/3

cp = (4μl + μc − 2Km
h −Km

c − 10Km
l )/3

cp = (2μl + 5μc − 4Km
h − 11Km

c − 2Km
l )

Solving above equations yields expected equilibrium capacities. The expected equilibrium

quantities for area 9 is

ql2 = K
m
l ql1 = (2xl − xc + 2Km

h +K
m
c − 2Km

l )/6

qc2 = K
m
c qc1 = (xc − 2xl + 4Km

h −Km
c + 2K

m
l )/6

Epml = E[xl − (ql1 + ql2)] = (2μl + cp + ch)/6
Epmc = E[xc − (qc1 + qc2)] = (μc + cp + ch)/3

The airlines’ expected profits are

Πmh = 2p
m
l ql1 + p

m
c qc1 − 2chKm

h = (p
m
c − 2pml )qmc1 + (2pml − 2ch)Km

h

=
1

18 ∆

(xc − 2xl)(xc − 2xl + 4Km
h −Km

c + 2K
m
l )dFldFc

+Km
l (2μl + cp − 5ch)/3

Πmp = 2(p
m
l − cp)Km

l + (p
m
c − cp)Km

c

= [Km
l (2μl − 5cp + ch) +Km

c (μc + ch − 2cp)]/3 (43)

The results follow after a few algebraic manipulations.

Appendix D The Proof of Proposition 11

Proof. By definition, at equilibrium each player’s strategy is a best response to its rival’s

strategy. In case a, from Propositions 8 and 9, a hub-and-spoke network is the best response

regardless of its rival’s network structure. The same is true for case b(i). In case b(ii), from
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(4, 4)(1.5, 3.5)P

(3.5, 1.5)(3 ,3)H

PH

(4, 4)(1.5, 3.5)P

(3.5, 1.5)(3 ,3)H

PH

Airline Two

Airline O
ne

Figure 7: Case b(ii)

2c 1c 1c 2c
P H→

H H→H H→H H→H H→
P H→P P→P P→ P P→

H P→

Figure 8: Case c

Propositions 8 and 9, each airline follows a tit-for-tat strategy, i.e., using the same network

structure as its rival. It can be verified that c < c̄2 is equivalent to 6c
2 − 8μc+ 5σ2 < 0. So

Πh −Πp = (6c2 − 8μc+ 5σ2 + 3c2 − 4μc)/27 < 0 (44)

Πp − Πmh = −(6c2 − 8μc+ 5σ2)/18 > 0 (45)

Therefore, (44), (45) and Proposition 10 yield Πmp < Πh < Πmh < Πp in case b(ii). This

confirms that (P,P) and (H,H) are the pure strategy NEPs. Figure 7 is an numerical example

of the network game for case b(ii).

It can be verified that c̄1 < c̄2 and c1 > c2. Case c can be described by Figure 8

where→ denotes responses, e.g., P → H indicates that a hub-and-spoke network is the best

response to a point-to-point network. The results for part c are established following the

same reasoning for part b.
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