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A b s t r a c t  
 

The Multiple Family Economic Lot scheduling Problem with safety stocks 

(MFELSP-SS) with normally distributed, time-stationary demand is considered in a 

manufacturing setting where the relevant costs include family setup costs, item setup 

costs, and inventory holding costs for both cycle and safety stocks.  The Family Planning 

Problem (FPP) is the first step in addressing the MFELSP—SS. The solution to the FPP 

is comprised of the basic period length, the family multipliers, and the item multipliers 

that give the lowest total cost of setups and carrying inventory.  The family multipliers 

and items multipliers are restricted to integer powers of two.  The solution to the FPP is 

used as the input to the Family Periodic Loading Problem (FPLP), which is the subject 

of this paper.  The purpose of the FPLP is to create a feasible production schedule that 

achieves, as much as possible, the cost minimizing objective of the FPP.   

The FPLP generates a production schedule that can be implemented, a feature 

that is not present in the FPP—or in many ELSP solution procedures.  Three efficient 

heuristic approaches to solving the FPLP are implemented and a comparison of their 

performance is presented.   

   

 

 

 

 

Subject classification:  334 multiproduct lot sizing, MFELSP—SS: feasibility 

issues 
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1 .  I n t r o d u c t i o n  

   In this paper, we take the solution of the Family  Planning Problem (FPP) 

(Karalli and Flowers, 2004) as the starting point of scheduling the families and items on 

a single machine.   The Multiple Family Economic Lot Scheduling Problem with Safety 

Stocks (MFELSP—SS) is an important problem that regularly occurs in practice that has 

not been adequately addressed in the literature.  In particular, it is common that 

production is to stock in such situations, rather than to customer order.  Because of 

substantial setup times, it is not possible to setup the machine for production to 

customer order.  Thus, safety stocks are required to buffer against demand uncertainty 

between planned runs of a particular product within a particular family.  Because of the 

need for safety stocks in these situations, we have adopted a basic period approach to its 

solution (Karalli and Flowers, 2004) rather than a time-varying lot sizing approach.  In 

addition, Just-in-Time manufacturing systems favor a basic period approach for 

coordinating with suppliers. 

The MFELSP-SS may be more completely characterized as a continuous-time, 

infinite-horizon extension of the ELSP where  

N families, each having N items, are produced in the same facility, one unit at a 
time. 
For each family, there is a: 

• sequence-independent setup cost 
• sequence-independent setup time 

For each item, the demand is: 
• time-stationary 
• normally distributed, with 
• known mean and standard deviation 
• uncorrelated with other items 
• not substitutable with other items. 

For each item: 
• there is a known, constant production rate 
• there is a sequence-independent setup cost 
• there is a sequence-independent setup time 
• there is a specified customer service level 
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• safety stock is maintained in order to meet the specified service level, 
and 

• there is no backlogging. 
 

For notational convenience, we take N to be both the number of families and items 

within each family, without loss of generality (w.l.o.g.).  When the number N exceeds the 

actual number of items in any family, or exceeds the number of families, we simply 

create dummy items and/or families and assign the value of zero to their parameters. 

The solution to the FPP of N families with N items in each family is a basic period 

length, T, an N-vector of family multipliers, K, and an × −N N matrix of item multipliers, 

k.  The solution, ( ) ,,K,kT specifies low cost production intervals for each item 

produced on the single machine.  The production intervals, in turn, determine the 

required working and safety stock levels.   

The solution to the FPP, however, does not specify the production sequence of the 

families and items, nor does it guarantee a feasible schedule given the scheduling 

assumptions under which the solution is generated.  The feasibility issue is not unique 

to the MFELSP—SS; in fact, it is systemic to any approach to the ELSP where multipliers 

are generated in a model and setup times are only considered in constraints as necessary 

(but not sufficient) conditions for feasibility.   

Whereas the mathematical formulation of the FPP, as well as ELSP formulations 

such as those referenced above, imposes a structure of equal lot sizes, termed artificial 

by Dobson (1987), it lends itself to cyclic schedules as does the FPLP.  As such, the 

Family Periodic Loading Problem (FPLP) begins with ( ),K,kT as its problem input and 

generates a solution in the form of a vector, f, which specifies the order of the items to 

be produced.  For each item, near-optimal production and idle times will be computed.   
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Maxwell (1964) considered a similar approach in his seminal paper.  Dobson 

(1987) provides a procedure for the deterministic ELSP, whereby f is specified and cost 

minimizing production times and idle times are generated.  Zipkin (1991) takes f as 

given and provides a solution approach to generating cost-minimizing production and 

idle times for the deterministic ELSP.  Our approach considers production run times, 

and both family and item setup times in generating a cyclic schedule where the 

minimum idle time across all loads is maximized.   

Schweitzer et al. (1988) shows that the periodic loading problem is NP-Complete.  

It is therefore necessary to develop an efficient procedure to create a feasible cyclic schedule 

when one exists.  Gallego (1990) provides a dynamic control procedure whereby there 

always exists an f-recovery schedule.  The implication for the FPLP is that it can be 

implemented in a random-demand environment. 

Dobson (1987) allows for unequal lot sizes to be scheduled for any item.  This 

relaxation of the equal lot size rule allows for the Periodic Loading Problem to be 

feasible when the sum of the ratios of each item’s demand rate to production rate is less 

than one.  In this paper, we enforce the equal lot size rule because of the existence of 

safety stocks.  Allowing the lot sizes to vary would further complicate the problem by 

requiring the safety stock levels to vary as well.  We assume that, in most cases, every 

setup and production run can be scheduled according to ( ).,K,kT  This assumption is 

reasonable when we consider that in practice, firms tend to operate with excess capacity 

in order to both meet future growth in demand for current products and to introduce 

new products.  Such excess capacity may also be used to accommodate schedules 

exhibiting uneven capacity utilization. 

In Section 2, we define and discuss the properties of the FPLP.  In Section 3, we 

present a formulation for the FPLP.  In Section 4, efficient heuristics for loading the 
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basic periods are proposed.  In Section 5, we present the Lagrangian relaxation used to 

test our heuristics.  In Section 6, we provide computational results, followed by 

concluding remarks in Section 7. 

2 .  T h e  F P L P  

The purpose of the FPLP is to generate a feasible schedule such as the one in 

Figure 1 using ( ),K,kT as the input. The variable T represents the length of the basic 

period as determined by the FPP (Karalli and Flowers 2004).  The production interval 

for every family ∈ Ni  is in iK multiples of the basic period.  The production interval for 

every item ( )∈ ×, N Ni j  is in ijk multiples of the basic period.  In the sample schedule 

in Figure 1, family 1 has a multiplier value of 1 1,K =  which means it is produced every 

basic period.  Families 2 and 3 both have family multipliers of 2, so they are produced 

every other period (Family 2 in odd numbered periods, Family 3 in even).  Item ( )1 1,   

has a multiplier of 11 1,k = so it is produced every time that family 1 is produced.  Items 

( )1 2, and ( )1 3, both have multiplier values of 2, so they are produced only every other 

time that family 1 is produced.  Items ( )2, 1 and ( )2 3, both have a multiplier value of 2, 

indicating each is produced every other time family 2 is setup. Item ( )2, 2 has a 

multiplier value of 22 1.k =  It is produced every time family 2 is setup.   Similar 

interpretations may be gleaned for the products of family 3 from Figure 1.  ijP is the 

production time for item ( ) .,i j
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Figure 1: Cycle time, Basic Period, and Multipliers for a sample MFELSP-SS problem.   
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3 .  A  F o r m u l a t i o n  o f  t h e  F P L P  

Given the solution to the FPP, ( ) ,,K,kT  we seek to create a feasible cyclic 

schedule.  The problem environment is characterized as follows: 

N Families, each having N items, need to be scheduled for production in a 
single facility. 
The cyclic schedule comprises M basic periods of length T, where: 

• T is provided in the solution to the FPP (Karalli and Flowers, 
2004) 

• The size of M depends on ( ) ,,K,kT  M is an input into the 
problem 

The cyclic schedule is τ time units long. 
For each family there is: 

• a known family multiplier—solved for in the FPP 
• a sequence-independent setup time 

For each item there is: 
• a known item multiplier—solved for in the FPP 
• a sequence-independent setup time, 
• a production lot size, dependent on ( ),K,kT  

The following parameters are inputs to the problem:  

iS  Setup time for family i 

ijs  Setup time for the jth item in family i 

ijd  Demand mean for item j in family i 
2
ijσ  

Demand variance for item j in family i 

ijp
 Production rate for item j in family i 

ijρ
 ij ij ijd pρ =  

ρ
 ( )ij iji j d pN N∈ ∈ρ = ∑ ∑  

We introduce the superscript t, which indexes the basic period sequence number 

in the cycle, 1 ., ,t M= L  

The solution to the FPP is used to compute the following: 
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M  Number of basic periods in a cycle.  { }max : , Ni ijM K k i j= ⋅ ∈  

τ  T Mτ = ⋅  

ijP  Production run time, including item setup time, for family i, item j.   

ij ij ij i ijP s T K kρ= + ⋅ ⋅ ⋅  

t
iF  Total time for producing family i in period t.  

1
.

N
t t t

i iji i ij
j

F S x P y
=

= ⋅ + ⋅∑   The decision variables t
ix and t

ijy are 

defined next. 
The decision variables of the FPLP are: 

t
ix  0-1 decision variable.  1t

ix = if family i is produced in period t; " i œ 

N; 0t
ix =  otherwise 

t
ijy  0-1 decision variable.  1t

ijy = if item ( ),i j is produced in period t; " 

( ) ;, N Ni j ∈ × 0t
ijy = otherwise 

Define: 

X  { }1X : N, , ,t
ix i t M= ∈ = L

 
Y  ( ){ }1Y : , N N, , ,t

ijy i j t M= ∈ × = L
 

b  ( )1 1mod ib t K= − +
 q  ( )1 1mod ijq t κ= − +
 

ijκ  ij i ijK kκ = ⋅
 

I
 

{ }2 ,I : N, ii i K= ∈ ≥  the set of family indices for which the family 
multiplier value is 2iK ≥  

J
 

( ) ( ){ }2 ,J , : , N N, iji j i j κ= ∈ × ≥
 the set of items ( ), N Ni j ∈ × for 

whom 2ijκ ≥
 

#I
 

The cardinality of I 

#J
 

The cardinality of J 

R
 

The set of real numbers 

tT
 

Capacity remaining in basic period  1, , ,t t M= …  
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The objective of Problem S, the formulation given to solve the FPLP, is to 

maximize the minimal idle time, L, resulting from the periodic loading process; 

that is, find L, X, and Y so as to 

       Maximize L

 Subject to  
1 1 1

    1; , ,
N N N

qb
i ij ti ij

i i j
x S y P L T t M

= − =
⋅ + ⋅ + ≤ ∀ =∑ ∑ ∑ L  (1) 

 1
1                                          1

/
; , ,

iM K
t
i

t
x i N

=
= ∀ =∑ L  (2) 

 1
1                                         1

/
; , , ,

ijM
t
ij

t
y i j N

κ

=
= ∀ =∑ L  (3) 

 1
0                                1  1; , , ; , ,

N
t t

iij i
j

y N x i N t K
=

− ⋅ = ∀ = ∀ =∑ L L  (4) 

  

 

0 1                                          1  1, ~ ; , , , ; , ,t t
i ijx y i j N t M− ∀ = ∀ =L L

 

(5)

 

 0L ≥  (6) 

Condition (1) is a capacity constraint on the basic period length.  Condition 

(2) allows for the selection of only one of the iM K possible family i schedules 

that are in accordance with the frequencies indicated by the family  multipliers.  

Condition (3) allows for the selection of only one of the ijM κ possible item 

( ),i j schedules that are in accordance with the frequencies indicated by the item 

multipliers.  Condition (4) enforces the technical requirement that items be 

scheduled only when their families have been setup.   
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The formulation above results in an integer program with n variables and 

p constraints, where  

( )1
2 2

1
, N N

i ij

N
i ij

i i j
K k

n K κ
− ∈ ×
≥ ≥

= + +∑ ∑   (7) 

1
2

.#I # J

i

N

i
i

K

p M K
=
≥

= + + + ∑  (8) 

We account for the minimum slack time variable by the number 1 on the 

RHS of (7).  The second term of the RHS of (7) accounts for each of the different 

starting positions in the M basic periods that each family can be scheduled.  We 

need one variable for each potential starting position.  Similarly, the third term 

on the RHS of (7) accounts for each of the different starting positions in the M 

basic periods that each item can be scheduled, that is every .ijκ    

There are M capacity constraints, one for each basic period.  The set 

{ }2I : N, ii i K= ∈ ≥ is the set of family indices for which the family multiplier 

value is 2.iK ≥  The set ( ) ( ){ }2J , : , N N, iji j i j κ= ∈ × ≥  is the set of items 

( ), N Ni j ∈ × for which 2.ijκ ≥    

The reader will note that the families with multiplier values 1iK = and the 

items for which 1ijκ = are omitted from the mixed integer program (MIP).  The 

reason for this is that these families and items are scheduled in every basic 

period, affording no flexibility.   The capacities of each basic period need to be 
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adjusted to reflect the fact that the omitted families and items have been 

scheduled.  For each family whose multiplier values 1,iK =  adjust the capacity by 

subtracting iS from the available capacity.  For each item ( ),i j for which 1,ijκ =  

subtract ijP from the available capacity, where  

.ij ij ij i ijP s T K kρ= + ⋅ ⋅ ⋅  (9) 

The item setup time is ,ijs and the item production time
 
is .ij i ijT K kρ ⋅ ⋅ ⋅   

Karalli and Flowers (2004) show that any solution to the MFELSP—SS can be 

represented in anchor form (AF).  That is, for every solution ( ),K,kT to the FPP, 

the following conditions hold: 

• 0 RT< ∈  
• ( )2 21, , , ; with 1K N NK K K K= ≤ ≤ ≤L L  

•  N, P,ii K∀ ∈ ∈ where { }2 :P ZP p += ∈  

• k is an ( )N N× − matrix whose it h  row, ,ik ⋅  is the vector of item 
multipliers for family i 

• ( )21, , , ;i i iNk k k=i L with 21 i iNk k≤ ≤ ≤L  

• ( ) , N N, Piji j k∀ ∈ × ∈  

Because the smallest family and item multiplier values are always equal to 

1, we are always able to omit the associated family and item variables for 

which 1,ijk =  and the associated family selection (Equation (2)) and technical 

constraints (Equation (4)) as well. 

4 .  H e u r i s t i c s  

We consider three heuristics for solving this problem.  The Preparation 

Stage below is a heuristic determination of family * ,i  which has the potential of 
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having the most uneven capacity utilization across the M periods.  The 

implication of uneven capacity utilization is that there may be one or more 

periods where a large portion of its capacity is required for family *i  and its 

items.  Scheduling these first would potentially avert any problems that would 

arise if they were scheduled later with not enough capacity in any single period. 

The following steps are a preparation for the three heuristics. 

Preparation Stage:  
Generate Problem S as in Section 3. 

Step 1:  Adjust the basic period capacities: 

( )
  if 1  then 1

  if 1  then 1

, , , , ,

, , , - , , ,
i t t i

ij t t ij

i N K T T S t M

i j N N T T P t Mκ

∀ ∈ = ← − ∀ =

∀ ∈ × = ← ∀ =

…
…   

Step 2:  Compute   , N .iJ j∀ ∈  

1

0 if 1

  let 
if 2

N,

i
N iji

i
ij

K

i J
K

K

κ

=

=


∀ ∈ =  ≥


∑
 

Step 3:  Select i* so that ( ) ( )  i* *, , , N .L
i i i iK J K J≥ ∀ ∈  

We can now rewrite Problem S as follows, and we will call this version Problem 

S’: 

      Maximize L

 Subject to  
1 1 1

    1; , ,
N N N

qb
i ij ti ij

i i j
x S y P L T t M

= − =
⋅ + ⋅ + ≤ ∀ =∑ ∑ ∑ L  (10) 

 1
1                                          1

/
; * , ,

iM K
t
i

t
x i i N

=
= ∀ ≠ =∑ L  (11) 
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 1
1

/

*

iM K
t
i

t
x

=
=∑  (12) 

 1
1                                 1

/
; , , , ; *

ijM
t
ij

t
y i j N i i

κ

=
= ∀ = ≠∑ L  (13) 

 1
1

/

*

ijM
t
i j

t
y

κ

=
=∑  (14) 

 
{ } ( )

1
0                         1 1; N\ * ; , ,

N
t t

iij i
j

y N x i i t K
=

− ⋅ = ∀ ∈ ∀ = −∑ L  (15) 

 
( )

1
0                   1 1* * ; , ,

N
t t

ii j i
j

y N x t K
=

− ⋅ = ∀ = −∑ L  (16) 

 0 1                                 1  1, ~ ; , , , ; , ,t t
i ijx y i j N t M− ∀ = ∀ =L L  (17) 

 
0L ≥

 
(18)

 

 
The following heuristics will involve the removal, and return of columns 

and rows of Problem S’.  We will always refer to the constraints of the MIP (even 

when modifications are made) as A b.x =  We also refer to the column vector 

under a variable xx ∈  by ( )a .x  

Each constraint in (11) and (12) can uniquely be identified by the family 

under consideration, and in (13) and (14) by the item.  More precisely, we refer to 

constraint (12) as constraint *ix and more generally to each constraint in (11) as 

constraint .ix  Similarly, we refer to constraint (14) as constraint * ,i jy and each 

constraint in (13) as constraint .ijy  Each family technical constraint in (15) and 
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(16) is identifiable by the family under consideration and by the family’s starting 

period.  We refer to constraint (16) as constraint *
t
iΦ  and more generally to each 

constraint in (15) as constraint .t
iΦ  

H 1 : 
Heuristic H1 was initially motivated by an approach to solving the 

traveling salesperson problem, whereby the relaxed assignment problem is first 

solved and tour breaking constraints are subsequently added until a feasible tour 

is obtained.  The approach is modified as follows: In H1, remove all the technical 

constraints in  (15) above.  That is, constraints ( )1 1, , , ,t
ii t KΦ = −L  

1* , , ,i i N≠ = L are removed from the MIP.  Family *i is selected for having the 

potential for the most uneven capacity utilization across the M basic periods.  

Next run the first-stage MIP.  Then, adjust the capacities of each period to reflect 

the scheduling of family *i  and its items.  Taking the scheduling of family *i as 

fixed, remove the columns for family *i and its items from the MIP.  Remove 

constraints * ,ix * ,i jy  and * ,iΦ  since they are no longer needed.   

In stage 2, return the constraints, removed in stage 1, to the MIP—

resulting in a smaller problem than the original.  The solution to the second-stage 

MIP, augmented by the schedule previously obtained for family *,i  is the 

schedule for the MFELSP—SS.   

Stage 1:   Remove constraint ( )1 1, , , ,t
ii t KΦ = −L  1* , , ,i i N≠ = L  from 

Problem S.  Solve the modified problem. 

 ( ) ( ) 1 1  if 1 then * * *, , , a .t t
i i it K x b b x∀ = − = ← −L  
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( ) ( ) 1 1  and  1  if 1 then * *, , , , , , a .t t
i i j i jt K j N y b b y∀ = − ∀ = = ← −L L

 

Remove the following columns: 

( )  1  and**a , , , ,t
iix t K∀ = L   

( )  1  1**a , , , , , ,t
ii jy t K j N∀ = ∀ =L L   

Remove the following rows: 

*ix  

 1  and* , , , ,i jy j N∀ = L  

( ) 1 1** , , ,t
ii t KΦ ∀ = −L  

Stage 2: Add back constraint(s) ( ) 1 1, , , ,t
ii t KΦ ∀ = −L 1* , , ,i i N≠ = L to the 

MIP. 

 Solve the adjusted problem. 

 The solution to the adjusted problem is the production schedule for 
the MFELSP—SS. 

H2:  

For heuristic H2, proceed with Stage 1 by removing all of the t
ijy  columns, 

 *,i i∀ ≠  from the MIP.  Remove all associated constraints; that is, the 'sijy  and 

's.t
iΦ   Next, we solve the modified MIP.  The solution to the Stage 1 MIP includes 

the schedule for family *,i  which will be part of the final solution of the FPLP.  

Stage 1 is completed by adjusting each of the M period capacities in order to 

reflect the scheduling positions of family *i and its items, followed by removing 
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the *
t
ix  and *

t
i jy  columns and constraints * ,ix * ,i jy  and * ,iΦ  since they are no 

longer needed. 

In the second stage of H2, return all of the t
ijy  columns,  * ,i i∀ ≠  to the 

MIP.  Return all associated constraints; that is the 'sijy  and 's.t
iΦ   Then solve the 

resulting MIP.  The solution to the second-stage MIP, augmented by the schedule 

previously obtained for family *i in stage 1, is the schedule for the MFELSP—SS. 

Stage 1:   Solve:   

       Maximize L

 Subject to  
1

     1* ** * ; , ,
N

qb
i i j ti i j

j
x S y P L T t M

=
⋅ + ⋅ + ≤ ∀ =∑ L  (19) 

 1
1

/

*

iM K
t
i

t
x

=
=∑  (20) 

 1
1                                  1

/
; * , ,

iM K
t
i

t
x i i N

=
= ∀ ≠ =∑ L  (21) 

 1
1

/

*

ijM
t
i j

t
y

κ

=
=∑  (22) 

 
( )

1
0                   1 1* * ; , ,

N
t t

ii j i
j

y N x t K
=

− ⋅ = ∀ = −∑ L  (23) 

 
0 1                                 1  1, ~ ; , , , ; , ,t t

i ijx y i j N t M− ∀ = ∀ =L L
 

(24) 

 
0L ≥

 
(25)

 
 
Next,  
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 ( ) ( ) 1 1  if 1 then * * *, , , a .t t
i i it K x b b x∀ = − = ← −L  

 

( ) ( ) 1 1  and  1  if 1 then * *, , , , , , a .t t
i i j i jt K j N y b b y∀ = − ∀ = = ← −L L

 

The last step (just above) reduces the remaining available capacities of the 

M basic periods, to account for the scheduling positions of family *i and its items 

when they are removed from the MIP for the second stage.  To consider the fact 

that the RHS values of the M constraints in (19) are no longer equal to T, we refer 

to these values as 1 2, , , .MT T TL  

Stage 2: Solve: 

       Maximize L

 Subject to  
1 1 1

       1

* *

; , ,
N N N

qb
i ij ti ij

i i j
i i i i

x S y P L T t M
= − =
≠ ≠

⋅ + ⋅ + ≤ ∀ =∑ ∑ ∑ L  (26) 

 1
1                                                1

/
; * , ,

iM K
t
i

t
x i i N

=
= ∀ ≠ =∑ L  (27) 

 1
1                                               1

/
; , , , ; *

ijM
t
ij

t
y i j N i i

κ

=
= ∀ = ≠∑ L  (28) 

 
{ } ( )

1
0                        1 1; N\ * ; , ,

N
t t

iij i
j

y N x i i t K
=

− ⋅ = ∀ ∈ ∀ = −∑ L  (29) 

 

0 1                                 1  1, ~ ; , , , ; , ,t t
i ijx y i j N t M− ∀ = ∀ =L L

 

(30) 

 
0L ≥

 
(31)
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 The solution to the adjusted problem is the production schedule for 
the MFELSP—SS. 

H3:  
The strategy for heuristic H3 is to solve the FPLP one family at a time.  

This approach may be desirable for large-scale problems.  The first stage is 

similar to that of H2, but Stage 2 proceeds by repeating Stage 1 of H2 for 1N −  

families.  Repeat Stage 2 until one family remains.  H3 terminates when each 

family’s schedule is obtained. 

Stage 1:   Proceed with the first stage of heuristic H3 as is done for H2.  The 
subsequent stages of H3 differ. 

Stage 2: Repeat step 3 of the preparation stage with the remaining families. 

Stage 3: Repeat steps 1 and 2 above.  When there are two families 
remaining, complete the heuristic using Stage 2 of H2. 

5 .  T h e  L a g r a n g i a n  R e l a x a t i o n  

We test our heuristics against a Lagrangian relaxation of Problem S.  The 

subsets of constraints in (3) that belong to families i with 2iK ≥  are removed. Let 

ijλ be the Lagrangian multiplier associated with item ( ),i j in the instance of 

constraint (3) that is relaxed.  The relaxed Problem LS follows. 

Problem LS:  A Lagrangian Relaxation of  Problem S  
  

( ) 1
2

      1
/

, N N
:

ij

i

M
t

ij ij
i j t

i K

Maximize L y
κ

λ
∈ × =

≥

 
 + ⋅ −  
 

∑ ∑

 

(32)

 
 

Subject to  
1 1 1

    1; , ,
N N N

qb
i iji ij

i i j
x S y P L T t M

= − =
⋅ + ⋅ + ≤ ∀ =∑ ∑ ∑ L  (33) 
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 1
1                                          1

/
; , ,

iM K
t
i

t
x i N

=
= ∀ =∑ L  (34) 

 
( ) { }

1
1                                        1

/
; , N

ijM
t
ij

t
y i j

κ

=
= ∀ ∈ ×∑  (35) 

 
1

0                1  1; , , ; , ,
N

t t
iij i

j
y N x i N t K

=
− ⋅ = ∀ = ∀ =∑ L L  (36) 

  

 
0 1                                 1  1, ~ ; , , , ; , ,t t

i ijx y i j N t M− ∀ = ∀ =L L
 

(37)

 

 0L ≥  (38) 

We employ the subgradient method, as outlined by Fisher (1981) to solve 

Problem LS.  Let ?s be the vector of 'sijλ in the ths iteration of the subgradient 

procedure, with 0? = 0  and ( )1? = ? + Cx - d .s s s st+ ⋅   The matrix C is the one 

formed by the removed rows of Problem S, and the column vector d is the 

resulting RHS ( )b = 1 .   The objective function in (32) can be rewritten as (39) 

below.  The row vector xs represents the vector of values of the decision variables 

in (39) below that solve Problem LS in iteration s. 

( ) ( )1 1 1
22 1

1 0
/ / /

, N N , N N N
:: :

ij ij i

ii i

M M M K
t t t

ij ij ij i
i j t i j t i t

i Ki K i K

L y y x
κ κ

λ
∈ × = ∈ × = ∈ =

≥≥ =

 
  
  + ⋅ − + ⋅ +        
 

∑ ∑ ∑ ∑ ∑ ∑ (39) 

 The step size, st , is given by (40) below.  The objective value at iteration s is 

represented by ( ) .D SZ λ  We obtain the lower bound *Z on DZ using the 
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heuristic H1 above. We begin with 0 2.u =  Whenever DZ has failed to decrease 

after three iterations, 2u is divided by two.  We stop the subgradient procedure 

when DZ has failed to change up to the fifth decimal place after ten iterations. 

 
( )
2

*

Cx d

s D S
s

s

u Z Z
t

λ ⋅ − ⋅  =
−

 (40) 

6 .  E x a m p l e  

We illustrate multi-family scheduling solution procedure with an example.  

In this example, a facility produces five families, each with five items.  The time 

unit is arbitrarily chosen to be one week.  The data are generated from uniformly 

distributed parameters as follows: 

Parameter     Distribution 
Family setup time (weeks) U(0.015, 0.025) 

Family setup cost ($) U(100, 500) 
Item setup time (weeks) U(0.0012, 0.018) 

Item setup cost ($) U(50, 150) 
Item holding cost ($) U(0.01, 1.25) 

Item demand mean (units) U(10, 500) 
Item demand standard deviation 

(% of demand mean) U(0.5, 0.85) 

Item production rate (units/week) U(10,000, 15,000) 
Item service level U(0.85, 0.9999) 

 

The data are: 

Family setup times:   ( )0.0226 0.0227 0.0221 0.0156 0.0189S =  

Family setup costs:     ( )$420 $261 $450 $350 $189A =  

Item setup times:     
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0.0027     0.0063 0.0099 0.0125 0.0177
0.0125 0.0140 0.0034 0.0065 0.0055
0.0136 0.0113 0.0081 0.0158 0.0013
0.0090 0.0053 0.0167 0.0032 0.0108
0.0026 0.0086 0.0154 0.0134 0.0030

s

 
 
 
 =
 
 
 
 

 

Item setup costs:    

$122 $66 $133 $82 $67
$100 $85 $128 $109 $94
$94 $79 $57 $139 $95
$61 $73 $62 $77 $102
$103 $141 $111 $140 $146

a

 
 
 
 =
 
 
 
 

 

Item holding cost: 

$1.14 $0.19 $0.32 $1.13 $1.00
$0.25 $0.59 $0.93 $1.19 $0.07
$0.63 $0.47 $0.73 $0.66 $1.18
$1.07 $0.11 $0.90 $0.92 $0.44
$0.19 $0.73 $0.23 $1.01 $0.70

h

 
 
 
 =
 
 
 
 

 

Item demand mean: 

378 218 379 251 270
400 440 227 11 54
181 34 239 106 350
16 152 258 356 28
418 396 292 105 364

d

 
 
 
 =
 
 
 
 

 

Item demand standard deviation: 

   

262.45       128.77 222.81 182.08 214.25
312.76 340.74 175.86 9.01 28.05
94.55 28.68 157.19 87.31 184.63
8.59 82.79 210.61 193.77 17.83
255.90 221.40 236.26 53.00 276.09

s

 
 
 
 =
 
 
 
 

 

Item production rate:  

     

14,340       10,887 12,421 10,955 14,201
14,592 13,598 10,765 11,720 14,108
11,700 10,508 12,431 12,721 12,237
14,193 10,303 13,211 11,242 10,769

12,700 11,145 11,445 13,540 12,346

p

 
 
 
 =
 
 
  

 

Item service level:     

    

0.9743      0.8881 0.9044 0.9673 0.9724
0.9398 0.9606 0.9321 0.9447 0.9723
0.8918 0.9177 0.8709 0.9133 0.8924
0.8927 0.8769 0.8689 0.9751 0.9988
0.9156 0.8712 0.9405 0.8663 0.9621

SL

 
 
 
 =
 
 
 
 
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The multi-family algorithm in Karalli and Flowers (2004) is used to obtain 

the solution, ( ) ,*, *, *T K k  given next. 

Total average cost 
TC=$9,933.87 

Basic period length 
T*=0.511 

Family multipliers k*= ( )2,  2,  2,  1,  2  

Item multipliers 
K*=

1 8 1 1 1
1 1 2 4 2
1 1 1 1 1
1 1 1 2 2
8 1 1 8 2

 
 
 
 
 
 
  

 

 

The Lagrangian upper bound is 0.21616.  Applying each of the three 

heuristics yields the results below 

Heuristic Objective Value % Difference from Lagrangian Upper Bound 

H1 0.21263 1.64 

H2 0.21379 1.12 

H3 0.20698 4.25 

 

The three heuristics were applied to 250 randomly generated problems 

from the distribution of parameters given above.  Results are tabulated below. 
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 Difference from Lagrangian Upper Bound 

Heuristic Mean Median Mode Standard Deviation 

H1 1.9391% 0.0001% 0.0000% 4.4186% 

H2 2.2948 0.0003 0.0000 4.8530 

H3 8.7440 5.0769 0.0000 11.8914 

Heuristic H1, which removed constraints and no variables, performed the 

best with a mean of 1.9391% difference from the Lagrangian relaxation compared 

to 2.2948% and 8.7440% for H2 and H3, respectively.   Heuristic H2 has the 

added desirable feature of further reducing the MIP by removing variables in 

addition to constraints.  The added computational efficiency raises the mean 

difference from the Lagrangian relaxation’s objective value from 1.9391% to 

2.2948%.  Dividing the MIP into more sub-problems (H3) incurs additional costs 

in solution quality.  For very large problems, the use of an approach like H3 could 

justify the additional penalty. 

7 .  S u m m a r y  

In this paper, we continue the study of the MFELSP—SS by taking the 

solution of the Family Planning Problem (FPP), ( )T ,,K,k and solving the Family 

Periodic Loading Problem, which actually schedules the family and its items 

across M periods.  We offer three heuristic procedures that increasingly trade off 

speed for solution quality.  Heuristic H1, the slowest, yielded objective values 

with a mean difference of 1.9391% from the Lagrangian relaxation.  Heuristic H2, 
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faster than H1, yielded objective values 2.2948 % lower than the Lagrangian 

upper bound.  Heuristic H3, the fastest, yielded objective values 8.7440% lower 

than the Lagrangian upper bound.   

One of the important deficiencies of basic period approaches that use 

multipliers is that there is no guarantee of a feasible schedule, especially when 

the equal lot size rule is enforced.  In this paper, we kept the equal lot-size rule 

because of the existence of safety stocks, arguing that allowing the lot sizes to 

vary would further complicate the problem by requiring the safety stock levels to 

vary as well.  These safety stock levels were computed in the FPP as part of the 

optimization problem.  Taken together, the solution procedures developed for the 

FPP and the FPLP should allow practitioners to solve the multiple family 

economic lot scheduling problem with safety stocks more effectively than 

previously available methodologies.  Environments where production is to stock, 

and not to customer order, where demand is uncertain, so safety stocks are 

required, and where stability and efficiency in production schedules are sought, 

should benefit from these procedures.  Thus, the heuristics should be particularly 

effective in Just-In-Time manufacturing environments. 
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