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Abstract:  Consider n manufacturers, each producing a different product and selling it to a market, 

either directly or through a common retailer. The n products are perfectly complementary, in the sense 

that they are always sold and consumed jointly or in sets of one unit of each. Demand for the products 

during a selling season is both price-sensitive and uncertain. Each of the n manufacturers faces the 

problem of choosing a production quantity and a selling price for his product. Two settings are 

considered, regarding the decision sequence of the n manufacturers: they are either simultaneous or 

sequential. The retailer, when present, employs a consignment-sales contract with revenue-sharing to bind 

her relationship with the manufacturers and to extract profit for herself. Using a multiplicative demand 

model in this paper, we fully characterize individual firms’ decisions in equilibria, under each of the two 

game settings, and derive closed-form performance measures, both for the channel and for individual 

channel members. These closed-form solutions allow us to explore the effects of channel structure and 

parameters on firms’ decisions and performance that lead to conclusions of managerial interest.               

                                                           
1 The author wishes to thank an anonymous Associate Editor and two referees for numerous suggestions 
that greatly improved the paper. He is grateful to Li Jiang, Fernando Bernstein and seminar participants at 
Fuqua School of Business of Duke University, School of Business and Economics of Wilfrid Laurier 
University and Graduate School of Management of University of California at Irvine, for useful 
comments.   
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1.  Introduction 

We study the production and pricing decisions of multiple manufacturers/suppliers, who produce 

and sell to a market a set of complementary products. (We will use manufacturers and suppliers 

interchangeably, throughout the paper.) There are numerous examples that can motivate such a 

model setting. For example, Amazon.com has an online marketplace where anyone can list for 

sale a variety of items (books, CDs, electronics, tools & hardware, kitchen & house-ware, etc.). 

There, one often finds complementary products (e.g., monitors and keyboards needed to 

assemble personal computers) listed by different sellers. In retail stores, some products are 

almost always sold and consumed jointly according to some proportion (e.g., solder and flux for 

plumbing; mascarpone cream and savoiardi biscuit used to make Tiramisú; bricks, wood and 

other building materials for home-building, etc.), and are produced and delivered by different 

manufacturers. In assembly systems (e.g., computers, automobiles and aircrafts, etc.), complete 

sets of components or modules, supplied by various manufacturers, are needed to put units 

together. See Gerchak and Wang (2004) and Granot and Yin (2004c) for more industry examples 

of decentralized assembly supply chains. Under these situations, demand for sets of the 

complementary products is influenced by the total price of all products, and their sales are 

constrained by the product(s) with the least stocking quantity. Consequently, in choosing his own 

production quantity and price, one manufacturer will have to contemplate what other 

manufacturers do. In addition, when a retailer is involved in the channel, the retailer will design a 

contract to maximize her own profit, in anticipating manufacturers’ behavior. 

 The purpose of this paper is to analyze the strategic decisions of firms providing 

complementary products, and their implications to supply chain/channel performance and to 

individual firms’ performance. (We use channel and supply chain interchangeably.) We consider 

the following model settings. There are n manufacturers, each producing a different product at a 

constant marginal cost and selling it to a market, either directly or through a common retailer. 

The n products are perfectly complementary to each other, in the sense that they are always 

purchased and consumed jointly or in set of, without loss of generality, one unit of each. (Of 

course, complementarity of products in reality is rarely perfect; we make this assumption, 

together with several others to be made later, so as to have an analytically tractable model and to 

gain sharper insights into the problem. We will discuss limitations and applicability of our 

insights gained under these assumptions and their possible extensions.)  Demand for sets of the 
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products during a selling season is price-sensitive, and is subject to uncertainty. The 

manufacturers each face the problem of choosing a production quantity and a selling price for 

their individual products. These decisions have to be made before the start of the selling season 

or before observing the realized demand. We explore and compare two settings with respect to 

the sequence of decisions of different manufacturers. In the first setting, all the n manufacturers 

make their decisions simultaneously; and in the second, they make decisions sequentially: 

without loss of generality, manufacturer #1 goes first, manufacturer #2 second, and so on, 

manufacturer #n goes last. 

 When the channel involves a retailer, the retailer offers the manufacturers a consignment-

sales contract with revenue sharing. Under such a contract, the retailer provides the 

manufacturers with a market medium (e.g., the physical shelf-space in a retail store or the 

Internet marketplace of Amazon.com, etc.) for selling their products, and allows the 

manufacturers to choose delivery quantities and retail prices for their products. She then charges 

the manufacturers a pre-determined percentage of the selling price on each unit of their products 

actually sold. Consignment-sales contract of this type is used for e-business on the Internet (e.g., 

Amazon.com’s marketplace), as well as under traditional retail store settings (c.f., Bolen 1978). 

Wang et al. (2004) study this contract in the context of a single supplier and retailer channel. 

 To capture the price-sensitivity and uncertainty of demand, we employ a deterministic, 

iso-price-elastic demand model multiplied by a random factor with general probability 

distribution. This demand function is one of a few models that have been adopted in the literature 

on studying joint pricing-production decisions for centralized systems (e.g., Karlin and Carr 

1962, Petruzzi and Dada 1999 and references therein) and for decentralized supply chains (e.g., 

Emmons and Gilbert 1998 and Wang et al. 2004).  

Our key contributions in this paper include to show that there exists a unique, Pareto-

optimal equilibrium solution for each of the two n-manufacturer production-pricing games (i.e., 

the simultaneous-decision game and the sequential-decision game), and there exits a unique, 

closed-form solution for the retailer’s optimal contract for each of the two games. Second, we 

derive closed-form performance measures for the decentralized channels and for individual firms 

in the channels. These closed-form solutions and performance measures then allow us to gain 

insights into how channel structure and parameters affect firms’ decisions and performances. 

Specifically, we show that under each of the two settings, the equilibrium product price 
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(production quantity) is always higher (lower) than the centralized optimal price (production 

quantity), resulting in a channel profit that is lower than the centralized profit. The performance 

of decentralized channels improves as the retailer’s share of channel cost increases and/or as the 

number of manufacturers n decreases.  On the performance of individual firms, we find that in 

each of the two channels, retailer’s net profit improves as her share of channel cost increases 

and/or as the number of manufacturers n decreases. Furthermore, retailer’s profit measured as a 

share of the total channel profit can never be below 1/(n+1).  When the channel does not involve 

a retailer, every manufacturer’s profit always decreases as the number of manufacturers 

increases. If the channel involves a retailer, however, a manufacturer’s profit can either increase 

or decrease as the number of manufacturers increases or as the retailer’s cost share increases. 

Concerning the relative profitability of different manufacturers, the results vary with the 

game settings: Under the simultaneous-decision setting, the n manufacturers each always make 

the same amount of profit, even though they may have different production costs. Under the 

sequential-decision setting, on the other hand, each manufacturer in general makes a different 

profit that depends on nothing but the ‘position’ a manufacturer takes in the overall sequence by 

which all manufacturers make their decisions. We find that keeping the total production cost as a 

constant, how to allocate it among the manufactures has no effect either on the channel 

performance or on individual firms’ performance.  

Comparing the performance of the two game settings, we show that when switching 

manufacturers’ decision sequence from simultaneous to sequential, overall channel profit always 

improves, with or without a retailer’s involvement; retailer’s profit, when relevant, always 

improves as well. For manufacturers, it depends on whether the channel involves a retailer: 

Without a retailer, each and every manufacturer’s profit improves; with a retailer, however, any 

of the n manufacturers can be either better off or worse off, depending on system parameters. 

The price-elasticity of demand plays a major role when comparing performances of the two 

game settings. 

This research contributes to the literature on joint production-pricing decision problems 

under uncertainty. In the classic newsvendor setting of centralized decision-making, Whitin 

(1955), Mills (1959, 1962) and Karlin and Carr (1962) are the earliest researchers who formulate 

and solve such problems. Petruzzi and Dada (1999) provide an excellent review and extensions 

to problems under newsvendor settings. Federgruen and Heching (1999), Chen and Simchi-Levi 
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(2004a, b) study production-pricing problems for multi-period settings. Yano and Gilbert (2004) 

provide a comprehensive review that covers a much broader range of production-pricing decision 

problems.  

Extending the newsvendor framework to decentralized supply chains, Emmons and 

Gilbert (1998) and Granot and Yin (2003) consider a setting where a supplier wholesales a 

product to a retailer who makes pricing-procurement decisions. Both papers explore how the 

supplier can improve channel performance by using an inventory-return policy for items 

overstocked by the retailer. Taylor (2003), Granot and Yin (2004a,b) study the effect of 

postponement of retail price or order quantity decisions on channel performance. Other recent 

papers dealing with joint production-pricing decisions of supply chain settings include Bernstein 

and Federgruen (2003, 2005), Ray et al. (2004), etc.   

Wang et al. (2004) consider a supply chain structure where a downstream retailer offers a 

consignment-sales contract with revenue sharing to a supplier who then makes production-

pricing decisions. Using a multiplicative and iso-price-elastic demand model, they derive 

equilibrium solution for the channel and closed-form performance measures. Research in the 

current paper extends the analyses of Wang et al. to systems with multiple suppliers of 

complementary products. In particular, while in Wang et al. (2004) the retailer plays a game 

against a single supplier who chooses his production quantity and product price, in this paper the 

retailer plays the game against multiple suppliers who in turn play an imbedded game, either 

simultaneously or sequentially, against each other in choosing their individual production 

quantities and prices.   

The complementary products in our model can be viewed as a set of different 

components from which a final product is assembled. As such, our supply chain setting relates 

directly to decentralized assembly systems. Research on contracting and coordination of such 

systems include Gerchak and Wang (2004), Granot and Yin (2004c), Bernstein and DeCroix 

(2004a, b), Tomlin (2003), Wang and Gerchak (2003), Gurnani and Gerchak (1998) and Zhang 

(2004). A key difference from the current paper is that all models in those papers assume that the 

product’s market demand, while uncertain, is not influenced by the selling price. Thus, all those 

models do not consider product pricing as part of the decision. Carr and Karmarkar (2005) 

consider decentralized assembly systems with price-sensitive, but deterministic demand. 
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Finally, this research complements the literature of Marketing and Economics that studies 

channel structure, competition and performance for substitutable products, e.g., Seade (1980), 

Choi (1991), Tyagi (1999) and references therein. Some of our findings here for complementary 

products naturally mirror those for substitutables. For example, competition leads to high price 

and low demand for complementary products vs. to low price and high demand for 

substitutables. Some other properties derived here, however, are not comparable with those for 

substitutables, as one will see from our discussions in Section 5.   

 The paper proceeds as follows. Section 2 details the model assumptions and derives the 

centralized decisions. Sections 3 and 4 analyze equilibrium decisions for the simultaneous-

decision model and for the sequential-decision model, respectively. Section 5 characterizes the 

effects of channel structure and parameters on performance, and compares the two model 

settings. Section 6 concludes the paper with discussions about model limitations and possible 

extensions. All mathematical proofs are placed in an Appendix. 

2.  Model assumptions and Centralized Decision 

Consider n  suppliers each producing a different product and selling it through a common retailer 

to the market. The n  products are perfectly complementary to each other, in the sense that they 

are always sold and consumed jointly or in set of, without loss of generality, one unit of each. 

One can also think of the products as n  different components or sub-modules from which a final 

product is then assembled and sold at the retailer. 

  Let ip  be the selling price of product i , ni  ..., ,1 = , and define 1
n

iiP p
=

≡ ∑  as the total 

price for one set of the n  products. Since the products are always consumed jointly, demand for 

sets of them during a selling season, denoted by D , depends on the total price P , and 

furthermore, can be uncertain. We use the following multiplicative functional-form to capture 

price-sensitivity and uncertainty of the demand: 

     ε⋅= )()( PyPD ,           (1) 

where )(Py  is a deterministic and decreasing function of price P , and ε  is a random factor 

with general CDF )(⋅F , PDF )(⋅f  and a mean value of µ . Assume that )(⋅f  has a support on 

] ,[ BA  with 0>> AB  and so 0>µ . Define  )](1/[)()( xFxfxh −≡  as the failure rate of the 

distribution function.  We further let )(Py  take the form of  
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             .1  ,0     where)( >>= − baaPPy b           (2) 

The above demand function form is one of a few models that have often been adopted by 

the literature studying joint production-pricing decisions; see Petruzzi and Dada (1999) for a 

review and extensions. In this formulation, the parameter b  is the price-elasticity index of 

(expected) demand. The larger the b  value, the more sensitive the demand is to a change in 

price. Products with a price-elasticity index greater than 1 are defined as being price-elastic, and 

as inelastic otherwise. We focus on price-elastic products and thus assume initially that 1>b . In 

our later-on analyses of decentralized decisions, we may put additional restrictions on the range 

for b  in order to guarantee the existence of equilibria. 

Product i , ni  ..., 1,= , is produced at a constant marginal-cost of $ ic , and there is a unit 

cost of $ 0c  incurred at the retail stage for handling one set of the n  products. Define ∑ =
≡

n

i icC
1

 

as the total production cost of the n  products, and 0

0

c
C c

α ≡
+

, 0 1α≤ ≤ , as the share of the 

total channel cost 0cC +  that is incurred at the retail stage. For simplicity, we assume that any 

unsold product at the end of the season neither has any salvage value nor bears any disposal cost. 

Similarly, in case of shortages, unsatisfied demand carries no penalty beyond the loss of revenue. 

The problem is to choose a production quantity iq  and a selling price ip  for each product 

i , ni  ..., 1,= . These decisions have to be made before observing the realized demand. In 

Sections 3 and 4, we will specify the contract that binds the relationships of the independent 

firms and their individual decisions. In the following, however, we consider the scenario where 

these decisions are made in a centralized fashion, which will serve as a benchmark for the 

decentralized decision-making cases.  

For a centralized system with a single decision-maker, it is obvious that one should 

choose to produce the same quantity for all the n  products, i.e., qqqq n ≡=== ...21 . This is 

simply due to the perfect complementarity of the products or due to the fact that unmatched 

products cannot be sold. On decisions for individual prices }{ ip , since the final demand depend 

on nothing but the total price ∑ =
=

n

i ipP
1

, it suffices to choose a value for P  itself, instead of 

for each individual ip . Let ),( qPcΠ  denote the expected profit of the system. We have 
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}])(,[min{)(}],[min{)(),( 00 εPyqPEqcCDqPEqcCqPc ++−=++−=Π .       (3) 

The rest of the analyses of this section can be found in Wang et al. (2004); we include 

them here for easy reference later in the paper. Following Petruzzi and Dada (1999), define 

)(Pyqz ≡ , and call it the ‘stocking factor’ of production. Then, the problem of choosing a 

price P  and a production quantity q  is equivalent to choosing a price P  and a stocking factor 

z . Substituting )(Pzyq =  into (3), the objective function can be rewritten as 

         },)()]([){(),( 0 zcCzzPPyzPc +−Λ−=Π                         (4) 

where     ∫ >−=Λ
z

A
dxxfxzz

 

 
0)()()(  for BzA ≤≤ .           (5) 

The optimal solution maximizing ( , )c P zΠ , denoted by ),( ∗∗
cc zP , satisfies the following two 

first-order conditions, which are derived by substituting baPPy −=)(  into (4) and then taking 

derivatives of ),( zPcΠ  with respect to P  and z , respectively: 

    
)(1

)( 0
∗∗

∗
∗

Λ−
⋅

−
+

=
cc

c
c zz

z
b

cCbP                  (6) 

and                  
∗

∗∗
∗ Λ−+

=
c

cc
c

bz
zbzzF )()1()( .                (7) 

Wang et al. (2004) show that when the distribution of ε  in the demand function satisfies 

the Increasing Generalized Failure Rate (IGFR) condition (Lariviere and Porteus 2001), i.e., 

0/)()(/)]([ >+= dxxxdhxhdxxxhd , the first order conditions of (6)-(7) provide a unique 

solution to the problem of maximizing  ),( zPcΠ . IGFR is a rather weak condition; it is 

obviously implied by the Increasing Failure Rate (IFR) condition, which is known to be satisfied 

by distributions like Normal and Uniform distributions, as well as the Gamma and Weibull 

families subject to parameter restrictions (Barlow and Proschan 1965). Lariviere (2004) provides 

excellent discussions on properties and applications of IGFR distributions. 

Substituting ),( ∗∗
cc zP  of (6)-(7) into (4), we obtain the optimal system profit as  

    ∗−∗∗

−
+

=Π c
b

cc zP
b

cCa )(
1

)( 0 .           (8) 
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3.  Decentralized Channel I – Simultaneous Decisions of Suppliers 

In a decentralized channel, there are n  independent suppliers, each producing one of the n  

products. The suppliers sell their products to the market through a common retailer under a 

consignment contract with revenue sharing. Under such a contract, each supplier i , ni  ..., 1,= , 

chooses a production quantity iq  and a selling price ip  for his own product; for each unit sold, 

the retailer keeps r  share of the sales revenue ip  for herself and remits the rest, i.e., ipr)1( − , to 

supplier i . The retailer is more powerful in the channel and decides unilaterally on the terms of 

the contract, i.e., the value of r , 0 1r≤ ≤ . We thus have a Stackelberg leader-followers’ game: 

The retailer, acting as the leader, moves first to offer the contract, and the n  suppliers, as 

followers, then simultaneously choose their individual production quantities and selling prices.  

Notice that for a given revenue share r  chosen by the retailer, the n  suppliers’ decisions 

constitute a gaming problem as well. This game, called the suppliers’ sub-game, is imbedded in 

the overall retailer-suppliers’ game. Furthermore, since each supplier has two decisions to make, 

namely, production quantity and retail price, the n  suppliers’ sub-game here could be played in 

three prescriptive settings: 1) they simultaneously choose their production quantities in first 

stage, and then simultaneously choose their prices in second stage; 2) they simultaneously 

choose their prices first, and then simultaneously choose their production quantities in second 

stage; and 3) they simultaneously choose their production quantities and prices all in one stage.  

It turns out that the suppliers’ sub-game may or may not have the same equilibrium outcome(s) 

when played under each of the above three settings, and that it involves a different set of 

analyses for each setting.  In this paper, we will assume that the first game setting is in place, 

namely, the suppliers simultaneously choose their production quantities in one stage, and then 

simultaneously choose their prices in second stage. Analyses for the other two settings and a 

comparison of the three shall be reported in the near future. See also Bernstein and Federgruen 

(2004) and Allon and Federgruen (2003), for related game setups and technical issues. 

 We will also examine the channel when the suppliers sell their products directly to the 

market, i.e., without the involvement of a retailer. The solution to such a channel is a special case 

of the general retailer-suppliers’ model, specializing on 0=r  and 0α = , and, hence, will be 

derived accordingly.   
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3.1.  Suppliers’ Sub-Gaming Problem 

For a given revenue share r , 0 1r≤ ≤ , chosen by the retailer, the n  suppliers make decisions in 

two stages: In stage 1, they simultaneously choose their individual production quantities { }iq  

and in stage 2, they then simultaneously choose their individual prices { }ip . The following 

observation helps to streamline the analyses for this gaming problem: 

Key Observation: In any Nash equilibrium, the suppliers’ production quantities are 

identical, that is, qqqq n ==== ...21 . 

The reason here is simple: Since the n  products are perfectly complementary, one supplier can 

have a chance to sell a unit of his product only if that unit can be matched by all other suppliers’ 

products. As a consequence, no supplier will produce more than any other supplier, and, hence, it 

has to be the case that all suppliers produce the same quantity in the end. 

 Define )(Pyqz ii ≡  as supplier i ’s stocking factor. Then, for any suppler i , choosing a 

production quantity iq  in the first stage is equivalent to choosing a stocking factor iz . 

Furthermore, choosing an identical quantity q  for all suppliers is equivalent to choosing an 

identical stocking factor z , i.e., zzzz n ==== ...21 .  Thus, the overall two-stage sub-game of 

suppliers can be solved naturally by following a backward induction procedure as follows: For 

any stocking factor z  chosen in the first stage, we find the equilibrium prices { ( )}ip z∗  of 

individual suppliers in the second stage; knowing { ( )}ip z∗  as the response functions of second 

stage, we then identify the equilibrium stocking factor ∗z  for first stage of the game. 

3.1.1. The Equilibrium Prices )}({ zpi
∗  under any Given Stocking Factor z  

We first derive supplier i ’s price response to any prices },...,,,...,{ 111 nii pppp +−  of all other 

suppliers. Define ii
n

j ji pPppP −=−≡ ∑ =− 1
. Supplier i ’s expected profit can be written as 

          
}.)]([)1){((                      

}],[min{)()1()(),|(
zczzprPpy

zEPpyprPpzyczPp

iiii

iiiiiiiii

−Λ−−+=
+−++−=Π

−

−−− ε
        (9) 

Lemma 1. For any prices },...,,,...,{ 111 nii pppp +−  chosen by all other suppliers, supplier i ’s 

profit function ),|( zPp iii −Π  is quasi-concave in his price ip  and has the unique maximizer: 
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1)]()[1)(1(

),(
−

+
Λ−−−

= −
−

∗

b
P

zzrb
zbczPp ii

ii ,   ni  ..., 1,= .       (10) 

 The pure-strategy equilibrium prices { ( )}ip z∗  of all suppliers, if any, are found by solving 

the n  simultaneous equations given in (10). We have the following Theorem: 

Theorem 1.  If nb > , then for any given stocking factor z , the n  suppliers’ pricing game has a 

unique Nash equilibrium that is given by 

      ])[(
)1)((

1
)]([

)( Ccnb
rnbzz

zzp ii +−
−−

⋅
Λ−

=∗ ,    ni  ..., 1,= .      (11) 

We see from (11) that for b n> , each and every supplier’s equilibrium price increases as 

the product price elasticity b  decreases, which is rather intuitive. As b n→ , the equilibrium 

price of every supplier goes to infinity, as seen from (11) as well.  If nb < , however, the pricing 

game, on the strategy space ( ) 0i ip z c≥ ≥  for ni  ..., 1,= , does not have a pure-strategy 

equilibrium. To see this, we know that any pure-strategy equilibrium must satisfy (11); if nb < , 

however, the total price, given in (12) below, becomes negative, which implies that ( ) 0ip z∗ <  at 

least for some i . 

From (11), a supplier’s price also depends on, and increases with, the total number n  of 

suppliers in the channel. This reflects the effect of competition among suppliers: Given that no 

one can sell more units of his product than anyone else, they each strive to increase their 

individual product prices so as to gain an advantage on sales revenue; the more the number of 

suppliers are in the channel, the more severe such a competition will be. As a consequence, when 

there are more suppliers competing in the channel, it requires a higher critical price elasticity 

nb >  to contain their prices from exploding into infinity. The requirement of nb >  here for an 

n -supplier’s problem seems to be a natural generalization of the single Newsvendor’s problem 

where it is required to have 1>b ; see Petruzzi and Dada (1999) and Wang et al. (2004).  

The above model insights suggest that for complementary products exhibiting low price 

elasticity relative to the number of suppliers, decentralized or uncoordinated pricing decisions 

can be detrimental to the supply channel. In reality, price elasticity varies widely across different 

types of goods and services. For most consumer goods (e.g., food, tobacco, electricity, etc.), 

price elasticity tends to be between 0.5 and 1.5 (Gwartney and Stroup 1997). Goods that are 
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luxuries (or non-essentials) or that have many competitive substitutes tend to have much higher 

elasticity values. For example, it is estimated that the elasticity for Chevrolet automobiles, which 

have many competing or substitutable vehicles of other brands, is 4.0 (Gwartney and Stroup 

1997) and that for music products is 6.3 (Gast 2002).  

The following additional properties of equilibrium prices follow directly from (11) and 

are rather intuitive: 

Corollary 1.  In Equilibrium, 

1) supplier i ’s optimal price )(zpi
∗  increases both in his own production cost ic  and in all 

other suppliers’ costs jc , ij ≠ ; 

2)  supplier i  chooses a price higher than supplier j , i.e., )()( zpzp ji
∗∗ > , if and only if supplier 

i  has a higher production cost than supplier j , i.e., iff ji cc > ; 

3) each and every supplier i ’s price )(zpi
∗  and, hence, the total price P  are decreasing in 

their revenue share (1- r ) allocated by the retailer. 

In equilibrium, the total price for a set of the n  products can be calculated from (11) as  

 
)1)(()]([

)()(
1 rnb

bC
zz

zzpzP n

i i −−
⋅

Λ−
== ∑ =

∗∗ .        (12) 

It is interesting to notice here that for any given total production cost C  of all suppliers, the total 

products price )(zP∗  is not affected by the allocation of C  among the suppliers. This is due to 

the fact that the price differential of any two suppliers is proportional to the difference in their 

production cost, as seen from (11).  

3.1.2.  The Equilibrium Stocking Factor ∗z  

We know that in equilibrium the suppliers will equalize their individual stocking factors iz  on 

some common value z  in the first stage of their game; and for any such z , we also know that in 

the second stage, each supplier will choose his own corresponding price )(zpi
∗  according to (11). 

Towards finding the specific value(s) of z  that the suppliers collectively will end up with in the 

first stage of their decisions, we characterize the optimal z  each supplier i  would prefer 

individually, so as to maximize his profit ]),(|)([ zzPzp iii
∗
−

∗Π  of (9). The result is presented as 

follows: 
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Lemma 2.  If 0/)()(/)]([ >+= dxxxdhxhdxxxhd , then each supplier i ’s profit function 

]),(|)([ zzPzp iii
∗
−

∗Π , ni  ..., 1,= , is quasi-concave in z  and reaches its maximum at ∗= czz  -- the 

centralized stocking factor of (7). 

Since each supplier individually prefers ∗= czz ,  it forms a Nash equilibrium for all 

suppliers each choosing ∗∗ = czz  in the first stage and then choosing their individual, optimal 

prices )( ∗∗
ci zp , ni  ..., 1,= , in the second stage. However, there are other equilibria: for any z  in 

the range of ∗<≤ czzA , all suppliers each choosing zz =∗  in the first stage and then their 

individual, optimal prices )(zpi
∗ , ni  ..., 1,= , in the second stage, form a Nash equilibrium. To 

see this, first notice that suppose suppliers choose different stocking factors { }iz  in the first 

stage, then in the second stage all suppliers will base their pricing decisions on the lowest 

stocking factor of all suppliers, namely, min { }i iz z= . Thus, when all other suppliers choose a 

common z  such that ∗<≤ czzA , any supplier i  would make himself worse-off by unilaterally 

choosing either a lower iz z<  value (due to the quasi-concavity of profit function) or a higher 

iz z>  value (due to the waste of his product units un-matched by other suppliers). On the other 

hand, for any ∗> czz , zz =∗  cannot be an equilibrium, since any supplier i  can benefit by 

unilaterally moving to ∗
cz . We summarize these properties as follows: 

Theorem 2. For the n  suppliers’ simultaneous production-pricing game, if 

0/)()(/)]([ >+= dxxxdhxhdxxxhd  and nb > , then  for any value of z  such that ∗≤≤ czzA , it 

forms a Nash equilibrium for all suppliers each to choose the stocking factor z  in the first stage 

and then their corresponding individual  prices )(zpi
∗ , ni  ..., 1,= , in the second stage. When 

∗= czz ,  the corresponding equilibrium is Pareto optimal. 

 Notice from Lemma 2 that the Pareto optimality of ∗∗ = czz  here is in a strict sense: 

among all the Nash equilibria, each and every supplier strictly prefers ∗∗ = czz . Due to such a 

strict and Pareto dominance, it is reasonable to predict ∗∗ = czz  as the unique outcome of 

supplier’s sub-game. For this reason, we will focus on this equilibrium for the rest of our 

analyses.  
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Substituting ∗= czz  into (12), we have that in equilibrium the total price of the n  

products, as a function of r , is given by 

   ∗
∗∗

∗
∗ ⋅

−−
−−

=
−−

⋅
Λ−

= c
cc

c P
rnb

b
rnb

bC
zz

zrP
)1)((
)1)(1(

)1)(()]([
)( α ,       (13) 

where ∗
cP  is the centralized price of (6). 

 Remarks: The two-step procedure works well for solving the suppliers’ production-

pricing gaming problem. The key here is to introduce the stocking factor z . The stocking factor 

effectively scales out the effect of pricing on production decision(s). Consequently, while the 

equilibrium/optimal price(s) depend heavily on the channel structure and competition 

parameters, the optimal stocking factor(s) do not. Since the stocking factor here is chosen or 

defined based on the specific, multiplicative demand function form of (1) – (2), however, 

whether such a ‘methodology’ can be usefully applied to, or generalized for, other settings 

remains to be explored. 

3.2.  Retailer’s Problem 

The retailer in the channel has the profit function of 

  })]([){(}],[min{)( 000 zczzrPPyDqrPEqcr −Λ−=+−=Π ,      (14) 

where for given r , z  and P  are chosen by the n  suppliers according to ∗= czz  and )(rPP ∗=  

of (13). Substituting ∗= czz  and )(rPP ∗=  into (14), we can show that  

      )(
)()()]1([

)]([)()( 11
0

1

0 rg
zcCb

zznbar b
c

bb

b
cc

b

⋅
+−

Λ−−
=Π −∗−

∗∗−

α
,       (15) 

where                  1( ) {[(1 ) ( ) ] ( ) }(1 )bg r b b n r b n rα α α −≡ − + − − − − .      (16) 

Theorem 3.  For ,nb >  the retailer’s profit function )(0 rΠ  is quasi-concave in r , and has the 

unique maximizer: 

    .1)1(
α
α

nb
nbr
−

+−−
=∗           (17) 

As expected, if the retailer incurs a bigger share α  of the channel cost, she allocates a 

bigger share  r∗  of the channel revenue to herself, so as to cover her increased cost. Second, 
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when there are more suppliers involved in the channel (i.e., if n  gets larger), the retailer leaves 

more share (1- r∗ ) of the revenue to suppliers, so as to damp the negative effect of more severe 

price competition of suppliers on channel revenue. The effect of price elasticity b  on r∗ , 

however, is more complicated: An increase in b  leads to a lower optimal product price which 

results in a lower demand that are determined by self-interested suppliers. In such a situation, it 

is not immediately obvious as to how the retailer should optimally adjust the revenue share 

allocation r∗  to influence suppliers’ behavior. Indeed, as can be shown from (17), r∗  can be 

either increasing in b , when 1nα > , or decreasing in b , when 1nα > .  

Theorems 1-3 completely characterize the decentralized decisions in equilibrium when 

the suppliers make their decisions simultaneously. We next formulate and solve the problem 

when suppliers make decisions sequentially. 

4.  Decentralized Channel II – Sequential Decisions of Suppliers  

As before, the retailer offers the suppliers a revenue sharing contract stipulating that for each unit 

of their products sold, the retailer keeps r  share of the sales revenue and remits the rest, i.e., 

r−1 , back to suppliers, and the suppliers then choose their individual production quantities and 

selling prices. Also as before, the suppliers make their decisions in two steps: step 1 - choosing 

their production quantities, and then step 2 – determining their prices. The difference here is that 

the suppliers make their decisions sequentially within each of the two steps:  without loss of 

generality, supplier 1 goes first, supplier 2 second, …, and supplier n  last.  

4.1.  Suppliers’ Sub-Gaming Problem 

Although the suppliers make their decisions sequentially, the key observation that in equilibrium 

all suppliers choose the same production quantity q  or equivalently the same stocking factor z  

in the first stage still applies. (As a matter of fact, the sequencing among suppliers in the first 

stage when choosing their production quantities has no impact at all on the outcome of the game 

analyzed here or in Section 3.) Thus, we again solve the suppliers’ two-stage sub-game following 

a backward induction procedure: For any given stocking factor z , find the equilibrium prices 

{ )}(zpi
∗ , and then identify the equilibrium stocking factor ∗z . 
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4.1.1. The Equilibrium Prices )}({ zpi
∗  

For given prices },...,,{ 121 −ippp  chosen by suppliers 1 through 1−i , supplier i  faces the 

problem of choosing his price ip . In doing so, supplier i  knows that suppliers 1+i  through n  

will respond sequentially in choosing their prices },...,,{ 21 nii ppp ++ . We introduce the following 

notation:  ∑ −

=− ≡
1

1}1,1{
i

j ji pP   and   ∑ +=+ ≡
n

ij jini ppP
1},1{ )( , where in )(},1{ ini pP +  we stress the fact 

that dynamically, },...,,{ 21 nii ppp ++  depend on ip , though they depend on },...,,{ 121 −ippp  as well. 

Then, we can write the n -supplier’s pricing problem as the following dynamic programming: 

            
},)]([)1)]{(([                                 

}],[min{)]([)1(                                               

)]([),|(max

},1{}1,1{

},1{}1,1{

},1{}1,1{)1,1{

zczzprpPpPy
zEpPpPypr

pPpPzyczPp

iiiniii

iniiii

iniiiiiiipi

−Λ−−++=

++−+

++−=Π

+−

+−

+−−

ε      (18) 

for . ..., ,2 ,1 ni =  

Lemma 3.  For any prices },...,{ 11 −ipp  chosen by suppliers 1 through 1−i , supplier i ’s profit 

function ),|( }1,1{ zPp iii −Π  is quasi-concave in its own price ip  and has the unique maximizer: 

  
1)]()[1)(1(

)(
),( }1,1{},1{

}1,1{ −
+

Λ−−−
+

= −+
−

∗

b
P

zzrb
zCbc

zPp inii
ii ,   ni  ..., 1,= ,      (19) 

where, { 1, } 1
n

i n jj iC c+ = +
≡ ∑ . 

 From (19), we can find the equilibrium prices )}({ zpi
∗  through a series of substitutions: 

We first obtain )(1 zp∗  directly from (19), since by definition {1,0} 0P ≡ ; substituting )(1}1,1{ zpP ∗=  

into (19), we then obtain )(2 zp∗ ; substituting )()( 21}2,1{ zpzpP ∗∗ +=  into (19), we subsequently get 

)(3 zp∗ ; and so forth, until we find  )(zpn
∗ . The outcome is described as the following Theorem: 

Theorem 4.  If 1>b , then for any given z , the n  suppliers’ sequential pricing game has a 

unique equilibrium that is given by 

  
)]()[1(1

)(
zzr

z
b
C

b
bczp

i

ii Λ−−


















−
+=∗ ,  ni  ..., 1,= .       (20) 
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It may not be a surprise to see from (20) that like in the simultaneous game setting, each 

supplier i ’s  price increases both in his own cost and in all other suppliers’ cost, and decreases in 

his revenue share (1 )r− . In addition to cost parameters and revenue share, however, an 

individual supplier’s price here also heavily depends on his position in the sequence of decisions: 

a supplier who makes decision later in the sequence tends to choose a higher price. For example, 

suppose two suppliers i  and j  have the same cost, i.e., ji cc = . Then, in equilibrium supplier j  

chooses a higher price than supplier i , if and only if supplier j  follows supplier i  in their 

decision making, i.e., if and only if ji < . This implies that when ji cc = , supplier j  makes a 

larger profit than supplier i , since in equilibrium they all produce the same quantity and sell the 

same quantity. As a matter of fact, we will show later in Proposition 1 that supplier j  makes a 

larger profit than supplier i , even if ji cc < .  

From (20), the total price of the n  products is calculated as 

)]()[1(1
)()(

1 zzr
Cz

b
bzpzP

n
n

i i Λ−−








−
== ∑ =

∗∗ .       (21) 

While a later supplier in the decision sequence ‘over-cuts’ earlier suppliers’ prices as 

discussed above, an earlier supplier does have the ability to proactively influence or control all 

later suppliers’ prices, through an early commitment of his own. Intuitively, such a vertical-

control-like relationship among the suppliers would lead to a lesser competitive environment, 

compared with under the simultaneous-decisions setting. Indeed, due to the lesser competitive 

relationship among suppliers, a sequential decisions channel always results in a lower product 

price than a simultaneous setting, as we will show later in Section 5. Also note that the 

simultaneous decision setting requires a minimum price elasticity of at least b n>  to prevent an 

explosion of suppliers’ competitive prices, while here the sequential setting only requires 1b > , 

which is essentially the same as when there is only one supplier in the channel. 

4.1.2. The Equilibrium Stocking Factor ∗z  

Substituting (20) and (21) into supplier i ’s profit function, we can show that 

       111
* )]([)1()1(})]()[()1)]{(([)( −−+−

−
∗ Λ−

⋅
−−

=−Λ−−=Π b

b

bibn

bibn

iii z
zz

Cb
rbazczzzprzPyz .          (22)  
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Lemma 4.  If 0/)()(/)]([ >+= dxxxdhxhdxxxhd  and 1>b , then each supplier i ’s profit 

function )(ziΠ , ni  ..., 1,= , is quasi-concave in z  and reaches its maximum at ∗= czz , the 

centralized stocking factor given by (7). 

 With Lemma 4 and following the same arguments as those for Theorem 2 for the 

simultaneous suppliers’ decision model, we can reach the following conclusion:  

Theorem 5.  For the n  suppliers’ sub-game of first choosing their individual production 

quantities and then sequentially choosing their prices, if 0/)()(/)]([ >+= dxxxdhxhdxxxhd  

and 1>b ,  for any value of z  such that  ∗≤≤ czzA , it forms a Nash equilibrium for all suppliers 

each to choose the stocking factor z  and their corresponding prices )(zpi
∗  of (20), ni  ..., 1,= . 

When ∗= czz , the corresponding equilibrium is Pareto optimal. 

 Like in the simultaneous setting, the Pareto optimality of ∗= czz  is in a strict sense: each 

and very supplier is strictly better off when choosing ∗= czz , and so we will again focus on this 

unique equilibrium point for the rest of the analyses. 

4.2.  Retailer’s Decision 

Substituting )( ∗∗
czP  of (21), ))(1( 0cCC +−= α  and )( 00 cCc +=α  into retailer’s profit 

function of (14), we can show that 

      )(ˆ
)()()1(

)]([)1(})]()[()]{([)( 11
0

)1(

00 rg
zbcC

zzbazczzzrPzPyr b
c

bnbb

b
cc

bn

ccccc ⋅
+−

Λ−−
=−Λ−=Π −∗−

∗∗−
∗∗∗∗∗∗∗

α
,     (23) 

where,            1ˆ( ) {[(1 ) ( 1) ] ( 1) }(1 )n n n bg r b b r b rα α α −≡ − + − − − − .       (24) 

Theorem 6.  The retailer’s profit function )(0 rΠ  is quasi-concave in r , and has the unique 

maximizer: 

   nn

nn

bb
bbr

)1()1(
)1()1( 1

−+−
−+−

=
−

∗

αα
αα .          (25) 

Similar to under the setting of simultaneous suppliers’ decisions, here the retailer again is 

able to allocate optimally to herself a bigger share r∗  of the sales revenue as she incurs a bigger 

share α  of the total channel cost and/or as the channel involves a larger number n  of suppliers. 
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5.  Channel Performance and Managerial Implications 
 Sections 3 and 4 fully characterize how self-interested firms interact to arrive at their individual 

decisions in the two decentralized channels, i.e., the simultaneous-suppliers-decision channel and 

the sequential-suppliers-decision channel, respectively. In each case, these decisions collectively 

result in a specific channel performance or profit and a specific allocation of the channel profit 

among the firms. In this section, we study these performances.  

For convenience, we will use subscripts I  and II  on notation to denote channel I  

(simultaneous-suppliers-decision) and channel II  (sequential-suppliers-decisions), respectively.  

Second, without further specification, all results concerning channel I  and channel II  are valid 

for 1b n> ≥  and for 1b > , respectively.  

We first present the following Proposition that characterizes the relative performance of 

the n  suppliers in each of the two channels.   

Proposition 1. 

1) In a decentralized channel with simultaneous suppliers’ decisions, all suppliers each earn 

the same amount of profit, even though they may incur different costs. That is, we have  

                                             1,

,
1i I

i I

+Π
=

Π
,   for 1,2,..., 1.i n= −                                                    (26) 

2) In a decentralized channel with sequential suppliers’ decisions, supplier 1i +  earns /( 1)b b −  

times of supplier i ’s profit, irrespective of the difference in their individual costs. That is,  

   1,

,
1

1
i II

i II

b
b

+Π
= >

Π −
,   for 1,2,..., 1.i n= −                                             (27) 

 The first interesting fact we observe here is that the relative profitability of different 

suppliers in both channels does not depend on their individual production costs. We know that a 

high-unit-cost suppler always incurs a bigger total production cost, since all suppliers produce 

the same quantity in equilibrium. On the other hand, we also know from (11) and (20) that 

everything else being equal, a high-cost supplier always chooses a higher price for his product. 

The ending result is that a high-cost supplier compensates his cost disadvantage by taking on a 

more aggressive pricing strategy. 

 Part 2) of Proposition 1 implies that under the sequential game setting, the profitability of 

one supplier relative to that of others depends heavily on the ‘position’ a supplier takes in the 

overall decision sequence. In particular, a supplier who moves later in the sequence earns more 



  

 19

than a supplier who moves earlier. In that sense, ‘moving early’ renders a supplier a 

disadvantage in payoff. 

 Most of the results of Proposition 1 appear to be rather robust with respect to model 

settings and assumptions. For example, consider an alternative setting where the n  suppliers 

move first, either simultaneously or sequentially, to set their individual wholesale prices charged 

to the retailer, and the retailer then chooses an order quantity together with a retail price for the 

final product and bears all the overstocking risk. Under such a setting, using the same demand 

function as in the current paper, Li and Wang (2005) show that all properties described in 

Proposition 1 hold fully. Considering the case where suppliers choose their wholesale prices 

simultaneously while assuming that demand is uncertain but price-insensitive (or with a constant 

retail price determined exogenously), Granot and Yin (2004c) show that part 1) of Proposition 1 

hold.  

 Return to the original model setting where retailer sets the revenue-share scheme and 

suppliers then choose their individual production quantities and retail prices. If we assume now 

that each supplier i  has a unit salvage value, denoted by is  with  0 i is c≤ < , for overstocked 

items, we can show that all properties of Proposition 1 hold fully.  Such a model generalization is 

of particular interest since it mimics a situation of imperfect complements: Consider two 

suppliers with 1 0s >  and 2 0s = . Then, while the sales of product 2 are completely tired to the 

availability of product 1, product 1 can always be sold, perhaps less profitably, independent of 

the availability of product 2.  

 How about the impact of the choice of demand function ( )y P ?  Under the simultaneous-

suppliers-decision setting, it can be easily verified that part 1) of Proposition 1 always holds, 

regardless of the specific form of ( )y P . (Of course, ( )y P  needs to obey some desirable 

properties of a proper demand function, e.g., decreasing in P .)   For sequential suppliers’ 

decisions, on the other hand, part 2) of Proposition 1 seems to be quite sensitive to the choice of 

( )y P . For example, using a two-supplier system, one can verify that if we instead choose 

( ) exp( )y P a bP= ⋅ −  with , 0a b > , we get 2, 1, 1II IIΠ Π = , and if ( )y P a bP= −  with , 0a b > , 

we have 2, 1, 1/ 2II IIΠ Π = .  This illustrates that under sequential decisions, the relative 

profitability of different suppliers actually depends heavily on the specific form of the demand 

function. In particular, moving early may render a supplier either an advantage or a 
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disadvantage, depending on the shape of the demand function. That said, however, the property 

that the relative profitability of different suppliers does not depend on their individual costs 

appear to be rather robust even under the sequential-decisions setting: with limited efforts we 

have yet to find an example that violate this property.  Finally, we point out that within the 

multiplicative demand function family of ε⋅= )()( PyPD , the choice of distribution function for 

ε  does not play much of a role. 

 For the rest of this section, in Subsection 5.1 we will characterize a few important 

properties, as to how system structure and parameters affect channel and individual firms’ 

performance, that are common for both simultaneous and sequential suppliers-decisions 

channels. In Subsection 5.2, we then compare the two channels in terms of their performances. 

5.1.  Effects of Channel Structure and Parameters on Performance 

We consider two different channel structures, one without the retailer and the other with the 

retailer. For each case, we benchmark the channel performance against that of a corresponding 

centralized channel. For the latter case, we also characterize how the total channel profit is 

distributed between the retailer and the suppliers. Notice, however, that Proposition 1 above 

regarding the relative profitability of suppliers applies to both cases, i.e., with or without a 

retailer in the channels.  

5.1.1.  Channel Performance without a Retailer 

Assume that the n  suppliers sell their products to the market directly, without the involvement of 

a retailer. A corresponding centralized channel would be one with a zero retail cost, i.e., 00 =c , 

and so 0=α . Specializing on 0=r  and 0=α  in (13) and (21), we obtain the equilibrium total 

price of the n  products as 

     1
I c

bP P
b n

∗ ∗−
= ⋅

−
         (28) 

and                         
1

1

n

II c
bP P

b

−
∗ ∗ = ⋅ − 

         (29) 

for the simultaneous-decisions channel and for the sequential-decisions channel, respectively, 

where, ∗
cP  is the corresponding centralized price of (6).  
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Notice from (28) and (29) that ,I II cP P P∗ ∗ ∗>  as long as 2≥n . That is, as long as the 

channel involves two or more suppliers, the product price in a decentralized channel is higher 

than the centralized product price, and, hence, the channel profit is lower than the centralized 

profit. This is nothing but due to the curse of price competition ramifying itself in the setting of 

complementary products: A price increase by any one supplier decreases the demand of all 

suppliers, and yet, in deciding on their individual prices, each supplier focuses on maximizing 

his own profit, resulting in a price that is too high from the channel’s point of view.  Such an 

outcome is in a predictable contrast with that under a substitutable products setting, where 

competition of multiple suppliers/retailers usually leads to too low products prices, e.g., Seade 

(1980), Choi (1991) and references therein.  

Substituting each of the two prices of (28) and (29) together with ∗= czz  and 00 =c  into 

(4), we can write the decentralized channel profits as ( , )k k cb nµ∗ ∗Π = ⋅Π , for ,k I II= , where ∗Πc  

is the centralized channel profit of (8), specializing on 00 =c , and           

1

1
( )( , )
( 1)

b

I b
n b nb n

b
µ

−

−
−

≡
−

          (30) 

and     
( 1)

( , ) ( 1)[ 1]
1 1

n b n

II
b bb n b

b b
µ

−
   ≡ − −   − −   

         (31) 

for the simultaneous-decisions channel and for the sequential-decisions channel, respectively.  

( , ), ( , ) 1I IIb n b nµ µ < , and they each measure the performance of one of the two channels. 

Proposition 2.  

1) ( , )I b nµ  and ( , )II b nµ  are each  decreasing in n; 

2) ( 1)lim lim n
b I b II neµ µ − −
→∞ →∞= = . 

  Part 1) of the Proposition 2 implies that keeping the total production cost at a constant, 

more suppliers and, hence, more competition lead to lower channel efficiency or performance, 

which is as expected.  Part 2) of Proposition 2 shows that when facing a product that is extremely 

price elastic, the two decentralized channels converges to each other, in terms of channel 

performance. We will use this result and those to be presented in Propositions 3 and 4 when we 

compare the two channels’ performances in Subsection 5.2. 
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 Total channel profit is distributed among the suppliers according to the schemes specified 

by (26) for channel I  and (27) for channel II , respectively. For a given total production cost of 

all suppliers, as the number of suppliers increases, the total channel profit in each channel 

decreases and, with a smaller total profit being distributed among more suppliers, the profit of 

each and every supplier decreases even more dramatically.   

5.1.2.  Channel Performance with a Retailer 

When the channel involves a retailer, by substituting ∗r  of (17) and (25) into (13) and (21) 

respectively, we can show that the equilibrium product prices in the two channels are given by 

     I c
b nP P
b n

α∗ ∗−
= ⋅

−
          (32) 

and                   [(1 ) ]
1

n

II c
bP P

b
α α∗ ∗ = − + ⋅ − 

,        (33) 

respectively, where, cP∗  is the corresponding centralized price. ,I II cP P P∗ ∗ ∗>  as long as 1<α .  

Substituting each of the two prices of (32) and (33) together with ∗= czz  into the channel profit 

function of (4), we write the channel profits as ( , )k k cb nγ∗ ∗Π = ⋅Π , for ,k I II= , where ∗Πc  is the 

centralized channel profit given in (8) and                 

          
1( ) [ ( 1 ) ]( , , )
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b
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b n
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α

−− + − −
≡

−
        (34) 

and           
(1 ) [ 1] 1

1( , , )
[(1 ) ]

1
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II n
b
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b
b

α
γ α

α α

 − − + − ≡
 − + − 

.        (35) 

Proposition 3.  

1) Iγ  and IIγ  are each increasing in α , and 1 1lim lim 1I IIα αγ γ→ →= = ; 

2) Iγ  and IIγ  are each decreasing in n ; 

3) (1 )lim lim ( 1 ) n
b I b II n n e αγ γ α − −
→∞ →∞= = + − , that is increasing in α  and decreasing in n . 

Part 1) of the Proposition implies that the performance of each of the two decentralized 

channels improves as the retailer’s portion of the total channel cost increases; and in the limiting 



  

 23

case, as the retailer incurs almost all the channel cost, each decentralized channel performs 

almost as good as the centralized channel. Part 2) of Proposition 3 indicates that with the 

addition of a strategic, downstream retailer, the negative effect of suppliers-competition on 

channel performance persists. That is, more suppliers and, hence, more upstream competition 

lead to lower channel performance. The opposite, however, was found to hold in distribution 

channels of substitutable products: With a strategic upstream manufacturer, adding more 

downstream competing retailers improve channel performance; see Tyagi (1999). 

We next study how the channel profit is distributed between the retailer and the suppliers 

and how individual firms’ performances are affected by system parameters. Substituting ∗= rr  

of (17) and IP P∗=  of (32) for channel I , and ∗= rr  of (25) and IIP P∗=  of (33) for channel II , 

into the retailer’s profit function of (14), we have 

     
1

0, 1
( )

( )

b
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,        (36) 

and        0,
1

1

[(1 ) ]
1

II cn
bb

b
α α

∗ ∗

−
Π = ⋅Π

 − + − 

.       (37) 

Retailer’s shares of the channel profit are calculated as 
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.          (39) 

Proposition 4. 

1)  Iβ  and IIβ  are each  increasing in α , converging to 1 as 1→α , and bounded below by 

)1/(1 +n ; 

2)  Iβ  and IIβ  are each decreasing in n ; 

3) lim lim 1/[ (1 ) 1]b I b II nβ β α→∞ →∞= = − + . 
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  The above Proposition shows that as the retailer incurs a bigger portion of the channel 

cost, she is able to extract a bigger share of the channel profit; when the retailer takes on almost 

all the channel cost, she is capable to capture almost the entire portion of the channel profit for 

herself. Second, as the number of suppliers n  increases, the retailer is forced to sacrifice on her 

share of profit. The retailer, however, is always able to secure herself a share that is above the 

average share )1/(1 +n  of all firms involved in the channel, even if she is to incur a zero cost.  

 From Propositions 3 and 4, we see that both the total channel profit and the retailer’s 

share of it in each of the two channels increase with retailer’s portion of channel cost, namely, 

α . Consequently, the retailer’s actual profits, i.e., 0,I
∗Π  and 0,II

∗Π , each increase as she takes on 

more of the channel cost. On the other hand, also from Propositions 3 and 4, the retailer’s actual 

profits each decrease as more competing suppliers are involved in the channel. The latter 

observation is again in sharp contrast with distribution channels, where Tyagi (1999) shows that 

the profitability of the strategic upstream manufacturer improves as the number of competing 

downstream retailers increases. 

 How about suppliers’ profits?  Propositions 3 and 4 do not provide an answer to how 

retailer’s cost share α  or the number of suppliers n  affect suppliers’ profits. For example, as α  

increases, while the size of the total channel profit pie gets bigger, a smaller share of it goes to 

suppliers. Indeed, these effects are more complicated and not monotone in nature: a few simple 

numerical examples illustrate that each supplier’s profit or their total can be either increasing or 

decreasing in α  and in n , depending on the values of parameters.  

5.1.3. Summary of Key Findings 

For a quick comparison, we summarize our findings about the effects of channel structure and 

parameters on channel and individual firms’ performances in a table format, see Table 1.  In the 

Table, a notation of ‘↑ ’ (‘↓ ’) indicates an increase (decrease) of a parameter or quantity.  

Included in Table 1 are also the effects of total channel cost 0( )c C+  and the allocation of 

the total production cost C  among the suppliers, i.e., specific values of 1 2, ,..., nc c c . These 

results, though not specifically stated in our earlier analyses, can be seen as follows: The 

centralized channel profit c
∗Π  of (8) decreases in  0( )c C+  and does not depend on the allocation 
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of C  among the suppliers; each of the channel profits k
∗Π  and individual firms’ profits ,i k

∗Π , for 

,k I II=  and 0,1,...,i n= , is an expression of the centralized profit c
∗Π  multiplied by a factor 

that does not depend on 0( )c C+  or the allocation of C . 

   Table 1:  Summary of Effects of Channel Structure and Parameters on Performances 

Channel 
Structure 

Profit of 
Channel 
Members 

Channel 
Cost 

0( )c C+ ↑  

Allocation of 
C  among 
Suppliers 

Retailer’s 
Cost Share 

α ↑  

Number of 
Suppliers 

n ↑  

Channel ↓  No Effect (N/A) ↓  Without 
Retailer Individual 

Suppliers ↓  No Effect (N/A) ↓  

Channel ↓  No Effect ↑  ↓  

Retailer ↓  No Effect ↑  ↓  
With 

Retailer 
Individual 
Suppliers ↓  No Effect ↑↓  ↑↓  

  

5.2.  Performance Comparison of the Two Channels    

The analyses of Subsection 5.1 show that qualitatively, the two decentralized channels are 

identical in terms of how channel structure and parameters affect performances. In this 

Subsection, we focus on the differences of the two in terms of their performances. Intuitively, as 

we have discussed earlier, sequential decisions of suppliers render the channel a less competitive 

environment and, hence, a better channel performance, compared with simultaneous decisions. 

We will formally confirm such a result. In addition, we will also compare the performances of 

individual firms under the two environments and show that when switching suppliers’ decision 

sequence from simultaneous to sequential, while the retailer is always better off, suppliers 

themselves may or may not. 

We first note that a simultaneous-suppliers-decision channel, i.e., decentralized channel I, 

with or without the involvement of a retailer, requires nb >  in order to have a finite product 

price together with a positive production quantity, so as to generate a positive profit for any 

party. On the other hand, a sequential-suppliers-decision channel, i.e., decentralized channel II, 

only requires 1>b . Thus, for any 1>≥ bn , channel II dominates channel I in absolute sense. 
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(Note, since we don’t know whether mixed-strategy equilibria exit for the suppliers’ games, the 

comparison here is restricted to considering pure-strategy equilibria.)   

 As ∞→b , the two channels converge to each other, which can be seen as follows: First, 

their total channel profits converge to each other, as seen from Part 2) of Proposition 2 for the 

case of without a retailer, and from Part 3) of Proposition 3 for the case with a retailer. Second, 

when relevant, the retailer’s shares of the channel profits in the two channels converge to each 

other, as seen from Part 3) of Proposition 4. And, third, as ∞→b , all suppliers in channel II 

each earn the same amount of profit as seen from (27), as they always do in channel I  – Part 1 of 

Proposition 1. 

 For the rest of this Subsection, we compare the two channels when 1>>>∞ nb . (When 

1=n , the two systems are physically identical.)  

5.2.1.  Channels without a Retailer 

From (28) and (29), we have that  

     ),(
)(
)1(

1 nbJ
bnb

b
P
P

n

n

II

I ≡
−
−

= −∗

∗

.        (40) 

Lemma 5.  For any 1>>>∞ nb , 1),( >nbJ , which implies that without a retailer, the price of 

decentralized channel I is higher than that of decentralized channel II, i.e., ∗∗ > III PP . 

 Since we know that for 1>n , the prices of both decentralized channels are higher than 

the centralized price ∗
cP  and that the channel profit function is quasi-concave in price, Lemma 5 

then leads to the conclusion that without a retailer, the channel profit of decentralized channel II 

is higher than that of decentralized channel I. This again reflects the fact that sequential decisions 

render a less competitive environment and, hence, a better channel performance.  

 In the following we compare individual suppliers’ profits of the two channels. In channel 

I , we know from Proposition 1 that the channel profit of (30) is evenly distributed among the n  

suppliers, that is, each earning the same profit of 

    ∗
−

−
∗ Π⋅

−
−

=Π cb

b

iI b
nb

1

1

)1(
)( ,  for ni  ..., 1,= .        (41) 

In channel II, the channel profit of (31) is distributed among the n  suppliers according to 

Equation (27), from which we can show that 
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11
,  for ni  ..., 1,= .                   (42) 

Proposition 5.  Without a retailer, for 1>>>∞ nb , each and every supplier earns a higher 

profit in  channel II than in channel I, i.e., ∗∗ Π>Π iIiII   for ni  ..., 1,= . 

Thus, without a retailer, the less competitive environment of sequential decisions benefits every 

member in the channel.  

5.2.2.  Channels with a Retailer 

From (32) and (33) we have that  

   ),,(
])1()1)[((

)1)(( nbK
bbnb

bnb
P
P

nn

n

II

I α
αα

α
≡

−+−−
−−

=∗

∗

.       (43) 

Lemma 6.  For any 1>>>∞ nb  and 01 ≥> α , 1),,( >nbK α , which implies that with a 

retailer, the product price in  channel I is always higher than that in channel II, i.e., ∗∗ > III PP . 

The above Lemma implies that with a retailer, the channel profit of channel II is still always 

higher than that of channel I. 

 We next investigate the difference of retailer’s profits in the two channels. From (36) and 

(37) we can show that the ratio of the retailer’s profits in the two channels can be expressed as 

    1)],,([ 1

0

0 >=
Π
Π −

∗

∗
b

I

II nbK α ,      

where ),,( nbK α  is defined in (43), and the inequality follows from Lemma 6. Thus, we have 

that the retailer in channel II earns a higher profit than in channel I. Such a result is not 

surprising: With a less competitive environment and, hence, a more efficient channel being 

created when switching suppliers’ decision from simultaneous to sequential, the ‘powerful’ 

retailer surely takes advantage of the situation and acts strategically to improve her own profit.  

The fact that the channel profit and the retailer’s profit improve simultaneously leaves it 

in doubt whether suppliers can improve their individual benefits, when switching their decision 

sequence from simultaneous to sequential. Indeed, it turns out that one channel cannot always 

dominate the other from any supplier’s point of view. Rather, it depends on system parameters. 

Let ∗∗ ΠΠ≡ iIiIIiR /)( , for ni  ..., 1,= , be the ratio of supplier i ’s profits in the two channels. 
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Obviously, )(iR  is increasing in i , i.e., )(...)2()1( nRRR <<< . Simple numerical examples 

show that when switching from channel I  to channel II , supplier 1 (the least profitable one 

among all the n suppliers in channel II ) can be better off under some parameter combinations, 

i.e., one can have  1)1( >R . On the other hand, even supplier n  can be worse off under some 

other parameter combinations, i.e., one can also have 1)( <nR . Our numerical studies suggest 

that )(iR  is increasing in n  and is decreasing in α , which are rather intuitive.   Table 2 

summarizes the results: 

        Table 2:  Performance Changes when Switching from Channel I to Channel II 
 

Channel ↑  Without 
Retailer Individual 

Suppliers ↑  

Channel ↑  

Retailer ↑  
With 

Retailer 
Individual 
Suppliers ↑↓  

6.  Concluding Remarks  

In this paper we studied decentralized production-pricing decisions of complementary products 

and their implications to supply chain performance. Many of the qualitative properties and 

insights obtained here for complementary products ‘naturally’ mirror, and are just the opposite 

of, those for substitutable products that are well known in the literature. For example, 

decentralized decisions and competition lead to higher product prices and lower production 

quantities in our complementary products setting, while they would generally result in lower 

prices and higher quantities in a substitutable products setting.  Some other properties obtained in 

this paper, however, are rather unique. For example, suppliers’ relative profitability does not 

depend on their individual costs.   

 The closed-form solutions and performance measures derived in the paper are elegant, 

and greatly enhance our understanding of system behaviors. In obtaining these analytical 

solutions and insights, however, we have made several major model assumptions. In the 



  

 29

following, we discuss further the applicability and limitations of these assumptions and comment 

on to what degree our model solution and insights may hold if one were to relax these 

assumptions. In doing so, we also point out a few future research directions.     

 The assumption of perfect complementarity of products in our model approximates best 

assembly systems, where a final product like a car is assembled from a set of unique 

components. The degree of complementarity of products in many other settings, however, varies 

and is in general not perfect. For example, mascarpone cream and savoiardi biscuit, mentioned in 

the Introduction, are not always sold and consumed together or not in some constant proportion. 

That is, they each have their individual demands, in addition to their joint demand. For these 

situations, we believe that some of our general model insights should still hold. For example, 

competition should always lead to too high product prices and to lower demand or production 

quantities. Some other more specific insights, like individual suppliers’ costs having no effect on 

individual profits, may disappear. 

    The exact type of consignment-sales contract with revenue-sharing adopted in our 

model is used both by online retailers (e.g., Amazon.com) and by traditional retailers (c.f., Bolen 

1978); see Wang et al. (2004) for discussions on the pros and cons of such a contract from the 

administrative point of view. Within the domain of consignment-sales, this contract can be 

shown to be equivalent to one where the retailer moves first to determine the retail price as a 

markup percentage of suppliers’ wholesale prices and suppliers then choose their individual 

wholesale prices charged to the retailer. Li and Wang (2005) recently consider a setting where 

suppliers move first to announce their individual wholesale prices and the retailer then chooses 

an order quantity and a retail price. Under such a setting, they show that while some properties, 

like those described in Proposition 1, still hold, others, like the effect of retailer’s cost share on 

performance, are violated. There are also many other types of contracts, which, when applied to 

our model setting, will lead to different equilibrium outcomes. For example, within the 

consignment-sales setting, the retailer may move first to determine the retail price as a net profit 

margin above suppliers’ wholesale price and her own cost. It would be interesting to explore how 

the insights gained based on the consignment contract with revenue-sharing will change when 

different contracts are considered.  

 In this research, we analyze and compare two given channel structures regarding 

suppliers’ decision sequence: they are simultaneous or sequential. We show that when switching 
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from the simultaneous decision structure to the sequential decision structure, the retailer and the 

channel are always better off, while individual suppliers can be either better off or worse off. 

Furthermore, even if all suppliers are better off, their individual gains can be different. In 

practice, recognizing the benefits of sequential decisions to the channel and to the retailer, a 

channel manager or the retailer should strive to push towards such a channel structure, through 

central or negotiation power or through contractual arrangements, depending on the specific 

situations. These findings, as interesting and relevant to practice as they are, also lend us a 

fundamentally important and interesting new question, which is: how do firms resolve their 

conflicts of interest so as to reach an equilibrium point in terms of channel structure? From a 

theoretical point of view, answering such a question amounts to formulating and solving a 

gaming problem that includes suppliers’ decision sequencing as part of firms’ (suppliers and 

retailer) overall decisions. Economists, e.g., Gal-Or (1985), has sensed such a fundamental 

problem as well. To the best of our knowledge, however, a usable modeling framework or 

solution concept has yet to be built.   

In order to obtain the closed-form solutions in this paper, we adopted the specific iso-

price-elastic and multiplicative demand function. Wang et al. (2004) show that for other demand 

function forms, like the linear and additive model, the solution would be almost intractable, even 

for their simpler setting with one supplier. On the other hand, they also show, through extensive 

numerical examples, the properties and insights generated based on the iso-price-elastic and 

multiplicative model do hold strongly for general demand models. It needs to be explored 

whether this observation also holds in our multi-supplier settings studied in this paper. 

  Finally, the retailer in our model theoretically is able to improve her profit by setting a 

different revenue share ir  for each supplier. It would be interesting to see how our current model 

solutions and properties would be affected or whether new insights can be generated when using 

different ir ’s in the contract. Unfortunately, this seems to result in a model that is analytically 

intractable, even for the simplest case with two suppliers.   
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Appendix   Mathematical Proofs 
 Proof of Lemma 1.  It follows from (9) that 
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Since the first factor in the above expression is positive for any BzA << , the first-order 
condition amounts to solving 0)()1()()( =Λ−+−≡ zbzbzFzzG  for z , which leads to ∗∗ = czz , 
as in (7), for supplier i . Now, )](1)][(1[)(' zbzhzFzG −−=  and 

)](')()][(1[)(')()(" zzhzhzFbzGzhzG +−−−= . So, if 0)(')( >+ zzhzh , then 0)(" <zG  at 
0)(' =zG , which implies that )(zG  is either quasi-concave or monotonically decreasing. In 

conjunction with the facts that )(zG  is continuous,  0)( >= AAG  and 0)1()( <−−= µbBG , we 
have that 0)( >zG  for ∗< czz  and 0)( <zG  for ∗> czz . Thus, 0/]),(|)([ >Π ∗
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The above argument applies to any supplier i ’s individual decision on z . Thus, each and 
every supplier’s individual preference on z  is the same, namely, ∗∗ = czz . This completes the 
proof of Lemma 2. 

Proof of Theorem 3.  Since the first factor in (15) is a constant, maximizing )(0 rΠ  is equivalent 
to maximizing )(rg . It follows from (16) that ])(1)1[()1()(' 2 rnbnbrbrg b αα −−+−−−= − .  
Now, 0)(' =rg  if )/(]1)1[( αα nbnbrr −+−−≡= ∗ , 0)(' >rg  for all ∗<≤ rr0  and 0)(' <rg  
for 1≤<∗ rr . Thus, )(0 rΠ  is quasi-concave and has the unique maximizer ∗r . 

 Proof of Lemma 3.  The proof is by induction. First, consider the case of ni = . Notice that by 
definition, 0)( 1},1{ =++ nnn pP ,  0},1{ =+ nnC  and nn PP −− =}1,1{ . With ni = , the problem of (18) is 
exactly the same as that of (9), and, hence, by Lemma 1, the conclusions of Lemma 3 hold for 
this case.  
 Second, we consider the case of 1−= ni . Substituting ),()( }1,1{1},{ zPppP nnnnn −

∗
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into (18), we can show that the profit function of supplier 1−n  is given by 
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Lemma 3 holds for 1−= ni .  
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 To complete the induction, we now assume that Lemma 3 holds for any arbitrary ki =  
and then show that it holds for 1−= ki  as well.  From the assumption that (19) holds for 

nkki  ..., ,1 , += , we can show after a series of substitution that 
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Substituting the above expression into (18), we get  
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Thus, we see again that ),|( )2,1{11 zPp kkk −−−Π  is quasi-concave in 1−kp  and reaches its maximum 
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thus complete the induction proof of Lemma 3.  

Proof of Lemma 4.  It follows from (22) that )()]([)1()1()(
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with  )()1()()( zbzbzFzzG Λ−+−≡ . The first factor of this expression is positive, and the rest 
of the proof follows the exact arguments as those in the proof of Lemma 2. 
Proof of Theorem 6.  Working on the profit function of (23), one can develop a proof by 
following the same procedure as that for Theorem 3.  

Proof of Proposition 1.  It follows from (9) that 1 1 1(1 ) [ ( )]
(1 ) [ ( )]

i i i

i i i

r p z z c z
r p z z c z

+ + +Π − − Λ −
=

Π − − Λ −
, which 

applies to both the simultaneous suppliers’ decision channel and the sequential suppliers decision 
channel. Now, for Part 1), substituting the equilibrium prices (11) into the above expression, we 
can show after some algebra that 1, ,/ 1i I i I+Π Π = ; and for Part 2), substituting the equilibrium 
prices of (20), we get 1, ,/ /( 1)i I i I b b+Π Π = − .   

Proof of Proposition 2.  Part 1). It follows from (30) that  
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. Thus, 

( , )I b nµ  and ( , )II b nµ  are each decreasing in n .   

Part 2). It is straight forward to show that ( 1)lim ( , ) n
b I b n neµ − −
→∞ = .  For ( , )II b nµ , the limit of 

its numerator can be derived as 
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Proof of Proposition 3.  Part 1): It follows from (34) and (35) that 
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So, ( , , )I b nγ α  and ( , , )II b nγ α  are each increasing in α . That ( , , ) ( , , ) 1I IIb n b nγ α γ α= =  as 
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(1 )( 1 ) nn n e αα − −+ − , is increasing in α  follows directly from Part 1) and that it is decreasing in 
n  follows from Part 2). 
Proof of Proposition 4.  Part 1): It follows from (38) and (39) that 
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, so Iβ  and IIβ  are each 

increasing in α . That they each converge to 1 can be verified by substituting 1α =  into (38) and 
(39).  For the lower bound, we  have that 
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where, the first “>” follows from the fact that Iβ  is increasing in α , and the second “>” follows 
from the fact that ( 0, , )I b nβ α =  is decreasing in b . Similarly, we can show that 1/( 1)II nβ > + . 
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Part 3): All the results here can be verified directly from (38) and (39). 
 Proof of Lemma 5.  From (40), it can be verified that 1)1,( ==nbJ . Furthermore, we can 
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Proof of Proposition 5.  Since supplier 1 earns the least profit in channel II and all suppliers 
each earn the same profit in channel I, we only need to show that ∗∗ Π>Π iIII1 . Or, from (41) and 
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Proof of Lemma 6.  From (43), we need to show that 1),,( >nbK α  for any 1>> nb  and 
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