
    
    
    
    
    

Technical Memorandum Number 756Technical Memorandum Number 756Technical Memorandum Number 756Technical Memorandum Number 756    
    
    

On Convergent Sequences of Linear ProgramsOn Convergent Sequences of Linear ProgramsOn Convergent Sequences of Linear ProgramsOn Convergent Sequences of Linear Programs    
    
    
    
    

bybybyby    
    

Daniel Solow 
Kamlesh Mathur 

Joseph G. Szmerekovsky 
    
    
    
    

August 2002    
    
    
    
    
    
    
    
    

Department of OperationsDepartment of OperationsDepartment of OperationsDepartment of Operations    
Weatherhead School of ManagementWeatherhead School of ManagementWeatherhead School of ManagementWeatherhead School of Management    

Case Western Reserve UniversityCase Western Reserve UniversityCase Western Reserve UniversityCase Western Reserve University    
11110900 Euclid Avenue0900 Euclid Avenue0900 Euclid Avenue0900 Euclid Avenue    

Cleveland, Ohio  44106Cleveland, Ohio  44106Cleveland, Ohio  44106Cleveland, Ohio  44106----7235723572357235 



On Convergent Sequences of Linear Programs

Daniel Solow, Kamlesh Mathur, Joe Szmerekovsky

Department of Operations
Case Western Reserve University

Cleveland, OH 44106
Fax: (216) 368�4776

e-mail: dxs8@po.cwru.edu

May 28, 2002

Abstract

This paper provides results pertaining to solving a sequence of linear programming
(LP) problems. SpeciÞcally, given the data for a sequence of approximating LPs that
converge to data for a limiting LP, several sufficient conditions are presented under which
(a) the sequence of optimal objective function values for the approximating problems
converges to the optimal objective function value of the limiting problem (even though
the optimal solutions might not converge) and (b) any convergent subsequence of op-
timal solutions to the approximating problems converges to an optimal solution of the
limiting problem.

1 Introduction and Notation

This paper is motivated by a variety of applications in which it is necessary to solve a
sequence of linear programming (LP) problems. In such applications, the optimal solution
to the current LP is used to create data for the next LP, as summarized in the following
general model.

A General Sequential Linear Programming Model

Step 0: Let c1 be a given n-vector, b1 be a given m-vector, and A1 be a given (m × n)
matrix for which the following LP1 has an optimal solution and set k = 1:

max c1x
subject to A1x ≤ b1

(LP1)

Step 1: Let xk be an optimal solution to LPk.

Step 2: Use xk and appropriate update formulas to compute ck+1, bk+1, and a matrix
Ak+1 for which LPk+1 has an optimal solution. Set k = k + 1 and go to Step 1.
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Solow et al. (2001) use such a model to study the emergence of functional specialization�
the property that, over time, individuals in a community tend to spend virtually all of their
time performing one, or at most a few, tasks. Another such application arises in Solow and
Sengupta (1985) and Solow and Papparizos (1989) to solve the Linear Complementarity
Problem, however, in those cases, the sequence of LPs is Þnite.

A sequence of such problems also arises when the data to a limiting LP are not known
directly, but rather, are approximated through a sequence of LPs. In Derman (1970) it is
shown that a stochastic dynamic programming problem with Þnite states and Þnite actions
can be formulated and solved as a linear programming problem. In such a linear program
the Ak matrix is a function of the estimate of the transition probabilities between states
at iteration k. As solutions to the linear program are implemented, additional information
regarding the transition probabilities is gained. This additional information is then used to
update the estimates for the transition probabilities between states. The resulting estimates
are then used in a new formulation with constraints corresponding to Ak+1. Solutions to the
new linear program are then implemented and the process repeated, resulting in a sequence
of linear programming problems.

A Þnal example of the need to solve a sequence of LPs arises in sampling-based methods
to solve two-stage stochastic programming problems [see, for example, Birge (1997)]. In
this application, the constraints of the master problems are sequentially reÞned by using
the optimal solutions to a collection of second-stage LPs.

To study general sequences of LPs, for each k = 1, 2, . . ., let

ck = an n-vector representing the objective function coefficients of LPk,
bk = an m-vector representing the right-hand-side values of LPk, and
Ak = the (m× n) matrix of constraint coefficients for LPk.

Then the associated LPk is:

max ckx
subject to Akx ≤ bk

(LPk)

It is assumed that (ck,bk, Ak) → (c∞,b∞, A∞), where c∞, b∞, and A∞ are the data for
the limiting LP∞ and (Ak) converges to A∞ element by element, that is, for all i and j,
(Akij)→ A∞ij as k →∞.

1.1 Examples and Counter Examples

When looking at geometric examples of such convergent sequences of LPs, two types of
results appear reasonable: (1) the optimal objective function values of LPk converge to the
optimal objective function value of LP∞ and (2) any convergent subsequence of optimal
solutions to LPk converges to an optimal solution of LP∞. The following examples show
that these intuitive results may or may not hold.
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Example 1: A Sequence of Optimal LPs that Converge to an Optimal LP in
Which the Optimal Objective Function Values and Solutions Converge.

LPk (Optimal) LP∞ (Optimal)

max x1 + x2
s.t. 1

kx1 ≤ 1
1
kx2 ≤ 1

x1 ≤ 1
x2 ≤ 1

(xk1, x
k
2) = (1, 1), xk1 + x

k
2 = 2

max x1 + x2
s.t. 0x1 ≤ 1

0x2 ≤ 1
x1 ≤ 1

x2 ≤ 1

(x∞1 , x∞2 ) = (1, 1), x∞1 + x∞2 = 2

However, the next two examples show that this need not always happen.

Example 2: A Sequence of Optimal LPs that Converge to an Optimal LP in
Which the Optimal Objective Function Values Do Not Converge.
Neither the optimal solutions nor the optimal objective function values of the following
sequence of LPs converges to that of the limiting LP:

LPk (Optimal) LP∞ (Optimal)

max x1 + x2
s.t. 1

kx1 ≤ 0
1
kx2 ≤ 0

−1 ≤ x1 ≤ 1
−1 ≤ x2 ≤ 1

(xk1, x
k
2) = (0, 0), xk1 + x

k
2 = 0

max x1 + x2
s.t. 0x1 ≤ 0

0x2 ≤ 0
−1 ≤ x1 ≤ 1
−1 ≤ x2 ≤ 1

(x∞1 , x∞2 ) = (1, 1), x∞1 + x∞2 = 2

Example 3: Another Sequence of Optimal LPs that Converge to an Optimal LP
in Which the Optimal Objective Function Values Do Not Converge.

LPk (Optimal) LP∞ (Optimal)

max x1
s.t. x1 − 1

kx2 ≤ 0
x1 ≤ 1

(xk1, x
k
2) = (1, k), xk1 = 1

max x1
s.t. x1 − 0x2 ≤ 0

x1 ≤ 1

(x∞1 , x∞2 ) = (0, 1), x∞1 = 0

In general, LP∞ can be infeasible, optimal, or unbounded. When LP∞ is infeasible, it
is possible to have a sequence of infeasible LPs that converge to LP∞, as shown in the next
example.

Example 4: A Sequence of Infeasible LPs that Converge to an Infeasible LP.

LPk (Infeasible) LP∞ (Infeasible)

max x1
s.t. 1 ≤ x1 ≤ − 1

k

max x1
s.t. 1 ≤ x1 ≤ 0
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The next example shows that is also possible to have a sequence of feasible LPs that converge
to an infeasible LP.

Example 5: A Sequence of Feasible LPs that Converge to an Infeasible LP.

LPk (Feasible) LP∞ (Infeasible)

max x1
s.t. 1

kx1 − x2 ≥ 1
x1 , x2 ≥ 0

max x1
s.t. 0x1 − x2 ≥ 1

x1 , x2 ≥ 0

Turning to the case when LP∞ is unbounded, the following three examples show that
the desired convergence results may or may not hold.

Example 6: A Sequence of Infeasible LPs that Converge to an Unbounded LP.

LPk (Infeasible) LP∞ (Unbounded)

max x2
s.t. x1 ≤ − 1

k
x1, x2 ≥ 0

max x2
s.t. x1 ≤ 0

x1, x2 ≥ 0

Example 7: A Sequence of Optimal LPs that Converge to an Unbounded LP.

LPk (Optimal) LP∞ (Unbounded)

max x1
s.t. 1

kx1 ≤ 1

xk1 = k

max x1
s.t. 0x1 ≤ 1

Example 8: A Sequence of Unbounded LPs that Converge to an Unbounded
LP.

LPk (Unbounded) LP∞ (Unbounded)

max x2
s.t. x1 ≤ 1

k
x1, x2 ≥ 0

max x2
s.t. x1 ≤ 0

x1, x2 ≥ 0

1.2 Notation

The examples in Section 1.1 indicate that conditions are needed to establish the desired
convergence results. A number of such conditions are presented in Sections 2 and 3 along
with answers to the following questions:

1. Under what conditions does the sequence of optimal objective function values converge
to the optimal objective function value of the limiting LP (even though the sequence
of optimal solutions might not converge)?

2. Under what conditions does any convergent subsequence of optimal solutions to the
approximating LPs converge to an optimal solution of the limiting LP?
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To simplify the analysis, it is now shown that it suffices to study a sequence of LPs
in which the objective function coefficients and right-hand-side values are the same from
one problem to the next and only the A matrix changes. To that end, introducing two
new variables y and z, note that LPk is equivalent to the following LP, in which only the
coefficient matrix changes:

max z
s.t. ckx − z = 0

Akx − bky ≤ 0
y = 1

As a result of the foregoing equivalence, consider now a sequence of LPs in which only the
coefficient matrix Ak changes from one problem to the next.

To achieve the desired convergence results, the following LPs are used. For given vectors
c ∈ Rn, b ∈ Rm, and e = (1, . . . , 1) ∈ Rm, deÞne the following primal and dual LPs, for
every (m× n) matrix A and real number ² ≥ 0:

Primal LP(A, ²)

max cx
s.t. Ax ≤ b+ ²e

Dual DLP(A, ²)

min ub+ ²ue
s.t. ATu = c

u ≥ 0

For clarity of notation, here and throughout the paper, transpose notation for vectors is
omitted and understood from the context in which the vectors are used. However, transpose
notation is used for matrices, where appropriate.

Note that LP(Ak, 0) is the kth primal LP in the original sequence and LP(A∞, 0) is
the limiting primal LP. When ² > 0, LP(A, ²) is the ²-outer LP for LP(A), as depicted
in Figure 1. Whenever LP(A, ²) is optimal, let X(A, ²) be the set of optimal solutions
for LP(A, ²) and let x(A, ²) be any element in X(A, ²) and u(A, ²) ∈ Rm be any optimal
solution for DLP(A, ²). Also, the following observation is used frequently.

Observation 1.1 If A is a matrix for which LP(A, 0) is optimal, then ∀² ≥ 0, the feasible
region of DLP(A, ²) is the same nonempty set.

2 Preliminary Convergence Results

As a result of the examples in Section 1.1, it is now assumed that for all k sufficiently
large, LP(Ak, 0) is optimal, that is, there is an integer k̄ such that for all k > k̄, LP(Ak, 0)
is optimal. To simplify the notation in the subsequent analysis, by dropping the Þrst k̄
problems and then renumbering, from here on it is assumed that:

Assumption 1: For each k = 1, 2, . . ., x(Ak, 0) is an optimal solution for LP(Ak, 0) and
x(A∞, 0) is an optimal solution for LP(A∞, 0).

Note that the sequence (x(Ak, 0)) need not converge to x(A∞, 0). Several sufficient con-
ditions are presented in this section to ensure that the optimal objective function values of

5



LP(A,0)
LP(A,ε)

Figure 1: A Linear Program and its ²-Outer Linear Program.

LP(Ak, 0) converge to that of LP(A∞, 0), that is, (cx(Ak, 0)) → cx(A∞, 0), even though
the optimal solutions might not converge. The approach to doing so is to show that for
every real number δ > 0 and k sufficiently large, the following two inequalities hold:

cx(Ak, 0) < cx(A∞, 0) + δ (1)

and
cx(Ak, 0) > cx(A∞, 0)− δ. (2)

Besides Assumption 1, additional assumptions are needed to establish the inequalities in (1)
and (2) and hence rule out the counter examples in Section 1.1. Such sufficient conditions
are presented in Sections 2.1 and 2.2.

2.1 Sufficient Conditions for the Inequality cx(Ak, 0) < cx(A∞, 0)+ δ.

The approach used to establish the inequality in (1) requires that for every ² > 0, the
optimal solution to LP(Ak, 0) eventually be feasible for the ²-outer LP of LP(A∞, 0). A
sufficient condition for this to happen is that there be an integer k̄ such that for all k > k̄,
the sequence (x(Ak, 0)) lies inside a compact set. To simplify the notation in the subsequent
analysis, by dropping the Þrst k̄ problems and then renumbering, it can be assumed that:

Assumption 2: There is a compact set C ⊂ Rn such that the speciÞc chosen sequence
(x(Ak, 0)) ⊆ C.
Indeed, if Assumption 2 does not hold, then the optimal objective function values for the
approximating LPs need not converge to the optimal objective function value of the limiting
LP, as shown in Example 3 in Section 1.1.
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With Assumptions 1 and 2, it is now possible to establish that for every ² > 0 and
k sufficiently large, the optimal solution to LP(Ak, 0) is feasible for the ²-outer LP of
LP(A∞, 0).

Lemma 2.1 Suppose that (Ak) → A∞ and for every k = 1, 2, . . ., x(Ak, 0) is optimal for
LP(Ak, 0). If there is a compact set C ⊂ Rn such that (x(Ak, 0)) ⊆ C, then ∀² > 0, there
is an integer j1 such that ∀k > j1, x(Ak, 0) is feasible for LP(A∞, ²).

Proof. Let ² > 0 and note that if A∞x(Ak, 0)−Akx(Ak, 0) ≤ ²e, then x(Ak, 0) is feasible
for LP(A∞, ²) because

A∞x(Ak, 0) ≤ Akx(Ak, 0) + ²e (by assumption)

≤ b+ ²e [x(Ak, 0) is feasible for LP(Ak, 0)]

It is now shown that there exists j1 such that for all k > j1, A
∞x(Ak, 0)−Akx(Ak, 0) ≤ ²e,

which will complete the proof. From here on, let Aki. denote row i of matrix A
k and A∞i.

denote row i of matrix A∞.
Because (x(Ak, 0)) ⊆ C and C is compact, there is a real number M > 0 such

that kx(Ak, 0)k < M for all k. Also, because (Ak) → A∞, for each row i = 1, . . . ,m,
||A∞i. − Aki.|| → 0. It follows that for each i = 1, . . . , m, there is an integer ki such that
||A∞i. − Aki.|| ≤ ²/M for all k > ki. Let j1 = maxi ki. Then for k > j1 and for each row
i = 1, . . . ,m, ||A∞i. −Aki.|| ≤ ²/M and so

A∞i. x(Ak, 0)−Aki.x(Ak, 0) = (A∞i. −Aki.)x(Ak, 0)

≤ ||A∞i. −Aki.|| ||x(Ak, 0)||

≤ ||A∞i. −Aki.||M (by deÞnition of C and M)

≤ ² (by the choice of j1)

Now i is arbitrary in the foregoing inequality, so A∞x(Ak, 0) − Akx(Ak, 0) ≤ ²e for all
k > j1. As has already been shown, this implies that A

∞x(Ak, 0) ≤ b+ ²e and so x(Ak, 0)
is feasible for LP(A∞, ²) and the proof is complete. 2

It can be challenging to verify Assumption 2 in a speciÞc application. However, in the
following theorem, it is shown that if the feasible region of the limiting LP is compact, then
Assumption 2 holds.

Theorem 2.1 If (Ak)→ A∞ and the feasible region of LP(A∞, 0) is compact, and

Assumption 1: For every k = 1, 2, . . ., x(Ak, 0) is optimal for LP(Ak, 0) and x(A∞, 0)
is optimal for LP(A∞, 0),

then there is a compact set C ⊂ Rn such that (x(Ak, 0)) ⊆ C.

7



Proof. Suppose, to the contrary, that the conclusion is not true. Then there is a subse-
quence K such that kx(Ak, 0)k→∞ as k ∈ K. A contradiction is reached by showing that
there is a direction d ∈ Rn with d 6= 0 such that A∞d ≤ 0 and hence the feasible region of
LP(A∞, 0) is not compact. To that end, consider the sequence

dk =
x(Ak, 0)

kx(Ak, 0)k , for k ∈ K.

Because kdkk = 1 for all k ∈ K, there is a subsequence K 0 ⊆ K and a vector d ∈ Rn with
kdk = 1 such that (dk)→ d as k ∈ K 0. Now each x(Ak, 0) is feasible for LP(Ak, 0), so,

Akdk =
Akx(Ak, 0)

kx(Ak, 0)k ≤
b

kx(Ak, 0)k , for all k ∈ K 0. (3)

Taking the limit as k ∈ K 0 in (3) and using the facts that (Ak) → A∞, (dk) → d, and
kx(Ak, 0)k → ∞ as k ∈ K 0, it follows that A∞d ≤ 0. Thus, it has been shown that there
is a direction d ∈ Rn with d 6= 0 such that A∞d ≤ 0 and hence the feasible region of
LP(A∞, 0) is not compact. This contradiction completes the proof. 2

The proof of Theorem 2.1 applies to any sequence of feasible points for LP(Ak, 0) and
therefore establishes that each LP(Ak, 0) is compact under the hypothesis of the theorem.
With regard to verifying that hypothesis in an application, an explicit representation for
the limiting LP is generally not available. However, in some cases, there is enough partial
information to ensure that the feasible region is compact. For example, in the application
in Solow et al. (2001), the limiting LP contains, among others, the constraints that the
variables lie inside the unit simplex and hence the feasible region is compact.

As shown in the next theorem, for Assumption 2 to hold, it suffices for the set of optimal
solutions of the limiting LP to be compact, provided that there is a lower bound on the
optimal objective function values of the approximating LPs.

Theorem 2.2 If (Ak)→ A∞, Assumption 1 holds, the set of optimal solutions to LP(A∞, 0)
is compact, and there is a real number z such that cx(Ak, 0) ≥ z for all k = 1, 2, . . ., then
there is a compact set C ⊂ Rn such that (x(Ak, 0)) ⊆ C.

Proof. Suppose that the conclusion of the theorem is not true. Then, as in the proof of
Theorem 2.1, there is a subsequence K such that kx(Ak, 0)k → ∞ as k ∈ K as well as a
vector d ∈ Rn and a sequence of directions

dk =
x(Ak, 0)

kx(Ak, 0)k , for k ∈ K,

such that

(dk) → d as k ∈ K, (4)

kdkk = 1, ∀k ∈ K, (5)

d 6= 0, (6)

A∞d ≤ 0, (7)
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Now d 6= 0 from (6) and A∞d ≤ 0 from (7), so d is a direction of recession for the feasible
region of LP(A∞, 0). It is now shown that d also satisÞes cd ≥ 0 because, for each k ∈ K,

cx(Ak, 0) ≥ z (by hypothesis)
cdk ≥ z/kx(Ak, 0)k (divide by kx(Ak, 0)k > 0).

The fact that cd ≥ 0 follows by taking the limit as k ∈ K on both sides of the last inequality.
It has now been shown that d is a nonzero direction in which it is possible to move

inÞnitely far from x(A∞, 0), stay feasible for LP(A∞, 0) (because A∞d ≤ 0), and not
decrease the objective function (because cd ≥ 0). In other words, the set of optimal
solutions to LP(A∞, 0) is not compact. This contradiction completes the proof. 2

Assumptions 1 and 2 are now used to establish the Þrst inequality of the convergence
result of the optimal objective function values.

Theorem 2.3 If the sequence (Ak)→ A∞ and

Assumption 1: For every k = 1, 2, . . ., x(Ak, 0) is optimal for LP(Ak, 0) and x(A∞, 0)
is optimal for LP(A∞, 0) and

Assumption 2: There is a compact set C ⊂ Rn such that (x(Ak, 0)) ⊆ C,

then ∀δ > 0, there is an integer j1 such that ∀k > j1, cx(Ak, 0) < cx(A∞, 0)+ δ.

Proof. Let δ > 0, u(A∞, 0) be any optimal solution for DLP(A∞, 0), and let ² be any real
number with

0 < ² <
δ

|u(A∞, 0)e| .

Assumptions 1 and 2 in the hypothesis ensure that Observation 1.1 and Lemma 2.1 are
true. Hence, using the integer j1 from Lemma 2.1, it follows that for k > j1,

cx(Ak, 0) ≤ cx(A∞, ²) [x(Ak, 0) is feasible for LP(A∞, ²) by Lemma 2.1]

= u(A∞, ²)b+ ²u(A∞, ²)e (duality theory)

≤ u(A∞, 0)b+ ²u(A∞, 0)e [u(A∞, 0) is feasible for DLP(A∞, ²) by Obs. 1.1]

= cx(A∞, 0) + ²u(A∞, 0)e (duality theory)

< cx(A∞, 0) + δ (deÞnition of ²)

This establishes the desired inequality and completes the proof. 2

2.2 Sufficient Conditions for the Inequality cx(Ak, 0) > cx(A∞, 0)− δ.
The approach used to establish the second inequality requires that for every ² > 0, the
optimal solution to the limiting LP be feasible for the ²-outer LP of LP(Ak, 0), for all k
sufficiently large, which is proved in the next lemma using Assumption 1.
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Lemma 2.2 If (Ak) → A∞ and Assumption 1 holds, that is, for every k = 1, 2, . . .,
x(Ak, 0) is optimal for LP(Ak, 0) and x(A∞, 0) is optimal for LP(A∞, 0), then ∀² > 0,
there is an integer j2 such that ∀k > j2, x(A∞, 0) is feasible for LP(Ak, ²).

Proof. Let ² > 0 and note that if Akx(A∞, 0) − A∞x(A∞, 0) ≤ ²e, then x(A∞, 0) is
feasible for LP(Ak, ²) because

Akx(A∞, 0) ≤ A∞x(A∞, 0) + ²e (by assumption)

≤ b+ ²e [x(A∞, 0) is feasible for LP(A∞, 0)]

It is now shown that there exists j2 such that for all k > j2, A
kx(A∞, 0)−A∞x(A∞, 0) ≤ ²e,

which will complete the proof.
Because (Ak)→ A∞, for each row i = 1, . . . , m, ||Aki.−A∞i. ||→ 0. It follows that for each

i = 1, . . . ,m, there is an integer ki such that ||Aki.−A∞i. || ≤ ²/kx(A∞, 0)k for all k > ki. Let
j2 = maxi ki. Then for k > j2 and for each row i = 1, . . . ,m, ||Aki. − A∞i. || ≤ ²/kx(A∞, 0)k
and so

Aki.x(A
∞, 0)−A∞i. x(A∞, 0) = (Aki. −A∞i. )x(A∞, 0)

≤ ||Aki. −A∞i. || ||x(A∞, 0)||

≤ ² (by the choice of j2)

Now i is arbitrary in the foregoing inequality, so Akx(A∞, 0) − A∞x(A∞, 0) ≤ ²e for all
k > j2. As has already been shown, this implies that A

kx(A, 0) ≤ b+ ²e and so x(A∞, 0)
is feasible for LP(Ak, ²) and the proof is complete. 2

A Þnal assumption is needed to obtain the second inequality for the proof that the
optimal objective function values of LP(Ak, 0) converge to that of LP(A∞, 0). Two different
such assumptions are provided here, the Þrst of which is that there is a sequence of optimal
solutions to DLP(Ak, 0) that lie inside a compact set, that is,

Assumption 3(a): There is a compact set D ⊂ Rm and for each k = 1, 2, . . ., an optimal
solution u(Ak, 0) for DLP(Ak, 0) such that u(Ak, 0) ∈ D.
It is now shown that the inequality in (2) holds under Assumptions 1 and 3(a).

Theorem 2.4 If the sequence (Ak)→ A∞ and

Assumption 1: For every k = 1, 2, . . ., x(Ak, 0) is optimal for LP(Ak, 0) and
x(A∞, 0) is optimal for LP(A∞, 0) and

Assumption 3(a): There is a compact set D ⊂ Rm and for each k = 1, 2, . . ., an optimal
solution u(Ak, 0) for DLP(Ak, 0) such that u(Ak, 0) ∈ D,

then ∀δ > 0, there is an integer j2 such that ∀k > j2, cx(Ak, 0) > cx(A∞, 0)− δ.
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Proof. Let δ > 0 and, from Assumption 3(a), let u(Ak, 0) be an optimal solution for
DLP(Ak, 0) with u(Ak, 0) ∈ D. Because D is compact, it follows that there is a real
number M > 0 such that for each k = 1, 2, . . .,

u(Ak, 0)e < M. (8)

Now let ² be any real number with 0 < ² < δ/M . Assumption 1 ensures that Observation
1.1 and Lemma 2.2 are true. Hence, using the integer j2 from Lemma 2.2, it follows that
for all k > j2,

cx(A∞, 0) ≤ cx(Ak, ²) [x(A∞, 0) is feasible for LP(Ak, ²) by Lemma 2.2]

= u(Ak, ²)b+ ²u(Ak, ²)e (duality theory)

≤ u(Ak, 0)b+ ²u(Ak, 0)e [u(Ak, 0) is feasible for DLP(Ak, ²) by Obs. 1.1]

< u(Ak, 0)b+ ²M [from (8)]

= cx(Ak, 0) + ²M (duality theory)

< cx(Ak, 0) + δ (deÞnition of ²)

Equivalently,
cx(Ak, 0) > cx(A∞, 0)− δ.

This establishes the desired inequality and completes the proof. 2

In a speciÞc application, it can be challenging to check Assumption 3(a). Using Assump-
tions 1 and 2, the next theorem provides a veriÞable sufficient condition on the limiting
LP�namely, that the set of optimal solutions to the dual of the limiting LP is compact�to
ensure that Assumption 3(a) holds.

Theorem 2.5 Suppose that Assumptions 1 and 2 hold. If there does not exist an m-vector
d 6= 0 such that (A∞)Td = 0, d ≥ 0, and bd = 0, then there is a compact set D ⊂ Rm and
for each k = 1, 2, . . ., an optimal solution u(Ak, 0) for DLP(Ak, 0) such that u(Ak, 0) ∈ D.

Proof. Suppose that the conclusion is not true. Thus, it is possible to construct a sub-
sequence K of optimal solutions u(Ak, 0) for DLP(Ak, 0) such that ku(Ak, 0)k → ∞ as
k ∈ K. A contradiction is reached by showing that there is an m-vector d 6= 0 such that
(A∞)Td = 0, d ≥ 0, and bd = 0. To that end, deÞne the sequence

dk =
u(Ak, 0)

||u(Ak, 0)|| for k ∈ K.

Clearly, ||dk|| = 1 for all k ∈ K. Thus, there exists a subsequence K 0 of K and a vector
d ∈ Rn with kdk = 1 such that (dk)→ d as k ∈ K 0. In addition, because u(Ak, 0) ≥ 0 for
all k ∈ K 0, dk ≥ 0 for all k ∈ K 0 and so d ≥ 0.
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Now consider the sequence

(Ak)Tdk =
(Ak)Tu(Ak, 0)

ku(Ak, 0)k =
c

ku(Ak, 0)k for k ∈ K 0.

Taking the limit over k ∈ K 0 on both sides of the foregoing equality and noting that c is a
constant vector and ku(Ak, 0)k→∞, it follows that (A∞)Td = 0.

Finally consider the sequence

bdk =
bu(Ak, 0)

ku(Ak, 0)k =
cx(Ak, 0)

ku(Ak, 0)k for k ∈ K 0.

Taking the limit over k ∈ K 0 on both sides of the foregoing equality and noting that, by
Assumption 2, the values x(Ak, 0) belong to a compact set and ku(Ak, 0)k→∞, it follows
that bd = 0.

That is, d satisÞes d 6= 0, d ≥ 0, (A∞)Td = 0, and bd = 0. This contradicts the
hypothesis and completes the proof. 2

While Assumption 3(a) provides a sufficient condition on the collection of dual LPs to
obtain the inequality in the conclusion of Theorem 2.4, the following assumption on the
primal LPs provides another alternative.

Assumption 3(b). ∀² > 0, ∃ an integer k and a feasible solution x̄k for LP(Ak, 0) such
that kx̄k − x(A∞, 0)k < ².
The next theorem establishes the same inequality as in Theorem 2.4 except under Assump-
tions 1 and 3(b).

Theorem 2.6 If the sequence (Ak)→ A∞ and

Assumption 1: For every k = 1, 2, . . ., x(Ak, 0) is optimal for LP(Ak, 0) and
x(A∞, 0) is optimal for LP(A∞, 0) and

Assumption 3(b): ∀² > 0, ∃ an integer k and a feasible solution x̄k for LP(Ak, 0) such
that kx̄k − x(A∞, 0)k < ²,

then ∀δ > 0, there is an integer j2 such that ∀k > j2, cx(Ak, 0) > cx(A∞, 0)− δ.

Proof. Let δ > 0. From Assumption 3(b), by setting ² = 1/k for each k = 1, 2, . . .,
it is possible to construct a sequence (x̄k) of feasible solutions for LP(Ak, 0) such that
(x̄k)→ x(A∞, 0). By continuity of the function f(x) = cx at the point x(A∞, 0), it follows
that (cx̄k) → cx(A∞, 0). In particular, for δ > 0, ∃ an integer j2 such that ∀k > j2,
|cx̄k − cx(A∞, 0)| < δ, so

cx̄k > cx(A∞, 0)− δ. (9)

Thus, for k > j2,

cx(Ak, 0) ≥ cx̄k (x̄k is feasible for LP(Ak, 0))
> cx(A∞, 0)− δ [from (9)]
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This establishes the desired inequality and completes the proof. 2

It is interesting to note that Assumption 3(b) fails to hold in Example 2 in Section
1.1, thus explaining why the sequence of optimal objective function values in that example
does not converge to the optimal objective function of the limiting problem. Also, Solow et
al. (2001) use the special structure of the sequence of LPs in their application to establish
that Assumption 3(b) holds. For other applications, it would be useful to have conditions
on the sequence of LPs and the limiting LP under which Assumption 3(b) holds. One
such condition is when x(A∞, 0) is feasible for each LP(Ak, 0), for then x̄k = x(A∞, 0).
Two additional conjectures that ensure the existence of the desired feasible solution x̄k are
presented next.

Conjecture 2.1 If whenever constraint i is binding at the optimal solution to LP(A∞, 0),
it follows that constraint i is binding at the optimal solution to LP(Ak, 0) for all k suffi-
ciently large, then ∀² > 0, ∃ an integer k and a feasible solution x̄k for LP(Ak, 0) such that
kx̄k − x(A∞, 0)k < ².

Conjecture 2.2 If ∃ an integer j such that ∀k > j, whenever constraint i is redundant
for LP(Ak, 0), constraint i is redundant for LP(A∞, 0), then ∀² > 0, ∃ an integer k and a
feasible solution x̄k for LP(Ak, 0) such that kx̄k − x(A∞, 0)k < ².

3 The Main Convergence Results

In this section, Assumptions 1, 2, and 3(a) and 3(b) are used to establish that the sequence of
optimal objective function values of LP(Ak, 0) converge to the optimal objective function
value of the limiting LP, even though the optimal solutions might not converge. As a
consequence of this result, it is also shown that any convergent subsequence of optimal
solutions to LP(Ak, 0) converges to an optimal solution of LP(A∞, 0). A sufficient condition
is also given under which the sequence of optimal solutions to the approximating LPs
converges. Finally, results pertaining to convergent sequences of basic feasible solutions are
presented.

Theorem 3.1 If (Ak)→ A∞ and

Assumption 1: For every k = 1, 2, . . ., x(Ak, 0) is optimal for LP(Ak, 0) and
x(A∞, 0) is optimal for LP(A∞, 0),

Assumption 2: There is a compact set C such that (x(Ak, 0)) ⊆ C, and either

Assumption 3(a): There is a compact set D ⊂ Rm and for each k = 1, 2, . . ., an optimal
solution u(Ak, 0) for DLP(Ak, 0) such that u(Ak, 0) ∈ D, or

Assumption 3(b) ∀² > 0, ∃ an integer k and a feasible solution x̄k for LP(Ak, 0) such
that kx̄k − x(A∞, 0)k < ²,

then (cx(Ak, 0)) → cx(A∞, 0), that is, ∀δ > 0, there is an integer j such that ∀k > j,
|cx(Ak, 0)− cx(A∞, 0)| < δ.
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Proof. Let δ > 0. Assumptions (1) and (2) in the hypothesis ensure that the conclusion
of Theorem 2.3 is true and so there is an integer j1 such that for all k > j1,

cx(Ak, 0) < cx(A∞, 0) + δ.

For the other inequality, Assumption 3(a) or 3(b) ensures that the conclusion of either
Theorem 2.4 or 2.6 is true. In either case, there is an integer j2 such that for k > j2,

cx(Ak, 0) > cx(A∞, 0)− δ.
Letting j = max{j1, j2}, the proof is completed by noting that for all k > j,

|cx(Ak, 0)− cx(A∞, 0)| < δ. 2

In general, the sequence of optimal solutions for the approximating LPs need not con-
verge, as shown in the following example.

Example 9: A Sequence of Optimal LPs that Converge to an Optimal LP in
Which the Optimal Objective Function Values Converge but the Optimal So-
lutions Do Not Converge.

LPk (Optimal) LP∞ (Optimal)

max x1
s.t. x1 + (−1)k 1kx2 ≤ 1

x2 ≤ 1
x1 , x2 ≥ 0

(xk1, x
k
2) =

(
(1+ 1

k , 1), if k is odd
(1, 0), if k is even

xk1 =

(
1+ 1

k , if k is odd
1, if k is even

max x1
s.t. x1 + 0x2 ≤ 1

x2 ≤ 1
x1 , x2 ≥ 0

(xk1, x
k
2) = (1, a) (where 0 ≤ a ≤ 1)

xk1 = 1

However, in the next theorem, it is shown that any convergent subsequence of (x(Ak, 0))
converges to an optimal solution of the limiting LP.

Theorem 3.2 If the assumptions in Theorem 3.1 hold, then any convergent subsequence
of optimal solutions to LP(Ak, 0) converges to an optimal solution to LP(A∞, 0).

Proof. Let K be any subsequence such that x(Ak, 0) converges to x∞ ∈ Rn as k ∈ K.
It is clear that x∞ is feasible for LP(A∞, 0). The fact that x∞ is optimal for LP(A∞, 0)
follows from Theorem 3.1 and continuity of the function cx because

cx∞ = c[ lim
k∈K

x(Ak, 0)] = lim
k∈K

cx(Ak, 0) = cx(A∞, 0).

The proof is now complete. 2

Although in general the sequence of optimal solutions to the approximating LPs need
not converge, as seen in Example 9, if the optimal solution to the limiting LP is unique, then
the sequence of optimal solutions to the approximating LPs does converge to the optimal
solution of the limiting LP, as stated as a corollary to Theorem 3.2.

14



Corollary 3.1 If the assumptions of Theorem 3.1 hold and x(A∞, 0) is the unique optimal
solution to LP(A∞, 0), then (x(Ak, 0)) → x(A∞, 0) as k →∞.

In an actual application, the optimal solutions to the approximating problems are likely
to be found by the simplex method and, as such, are going to be basic feasible solutions
(bfs). A natural question to ask is whether any convergent subsequence of optimal bfs of
the approximating LPs converges to an optimal bfs of the limiting problem. The following
example shows that this need not always happen.

Example 10: A Sequence of Optimal LPs Whose Optimal bfs Do Not Converge
to an Optimal bfs of the Limiting LP.

LPk (Optimal) LP∞ (Optimal)

max x2
s.t. − 1

kx1 + x2 ≤ 1
1
kx1 + x2 ≤ 1
x1 ≤ 1

−x1 ≤ 1

(xk1, x
k
2) = (0, 1), xk2 = 1

max x2
s.t. 0x1 + x2 ≤ 1

0x1 + x2 ≤ 1
x1 ≤ 1

−x1 ≤ 1

(x∞1 , x∞2 ) = (0, 1) (not a bfs), xk2 = 1

One set of conditions ensuring that any convergent subsequence of optimal bfs of the
approximating LPs converges to an optimal bfs of the limiting problem is provided in the
next theorem.

Theorem 3.3 If (Ak)→ A∞ and

(a) For every k = 1, 2, . . ., x(Ak, 0) is an optimal bfs for LP(Ak, 0) and,

(b) For any sequence of nonsingular (n×n) submatrices (Bk) of (Ak) in which each matrix
Bk consists of the same rows of Ak, it follows that the limiting (n×n) submatrix B∞
of A∞ is nonsingular,

then any convergent subsequence of (x(Ak, 0)) converges to an optimal bfs of LP(A∞, 0).

Proof. Let K be a subsequence and x∞ ∈ Rn such that (x(Ak, 0))→ x∞ as k ∈ K. Also,
because each x(Ak, 0) is bfs for LP(Ak, 0), let Bk be an (n× n) nonsingular submatrix of
Ak such that, together with the remaining rows of Ak denoted by Nk,

Bkx(Ak, 0) = bBk and (10)

Nkx(Ak, 0) ≤ bNk . (11)

To establish that x∞ is an optimal bfs for LP(A∞, 0), it is Þrst shown that x∞ is a bfs for
LP(A∞, 0). To that end, a nonsingular (n× n) submatrix B∞ of A∞ is produced with the
property that, together with the remaining rows of A∞ denoted by N∞,

B∞x∞ = bB∞ and (12)

N∞x∞ ≤ bN∞ . (13)

15



To construct this matrix B∞, note that because there are a Þnite number of constraints,
there is a subsequence K 0 of K such that for each k ∈ K 0, the indices of the n binding
constraints at the bfs x(Ak, 0) are all the same. Let B∞ be the (n × n) submatrix of A∞
corresponding to those binding constraints. Condition (b) in the hypothesis ensures that
B∞ is nonsingular. The fact that (12) and (13) hold follows by taking the limit on both
sides of (10) and (11) over k ∈ K 0. Thus, x∞ is a bfs for LP(A∞, 0).

It remains to show that x∞ is optimal for LP(A∞, 0). To that end, note that each xk

is an optimal bfs for LP(Ak, 0), so, for each k ∈ K 0,

c(Bk)−1 ≥ 0. (14)

Taking the limit over k ∈ K 0 in (14), noting that (Bk) converges to the nonsingular matrix
B∞, it follows that the bfs x∞ is optimal for LP(A∞, 0) because

c(B∞)−1 ≥ 0.

The proof is now complete. 2

Although no condition on the limiting LP has been found to ensure that hypothesis (b)
in Theorem 3.3 holds, it is interesting to note that this hypothesis rules out the sequences
of linear programming problems in the counter example in Example 10 in this section as
well as those in Examples 2, 3, 5, and 7 in Section 1.1.

Summary

This paper provides results pertaining to solving a convergent sequence of linear program-
ming (LP) problems. SpeciÞcally, given the data for a sequence of approximating LPs
together with a limiting LP, the conditions in Theorem 3.1 in Section 3 are sufficient to
ensure that (a) the sequence of optimal objective function values for the approximating
problems converges to the optimal objective function value of the limiting problem (even
though the optimal solutions might not converge) and (b) any convergent subsequence of
optimal solutions to the approximating problems converges to an optimal solution of the
limiting problem. In essence, these are sufficient conditions for the optimal objective func-
tion value of an LP to be a continuous function of the matrix of the LP. An area for future
research is to identify sufficient conditions on the sequence of LPs and the limiting LP under
which Assumption 3(b) in Theorem 3.1 in Section 2.3 holds�such as the open Conjectures
2.1 and 2.2 presented in Section 2.2.

The condition in Theorem 3.3 in Section 3.1�that there is no sequence of nonsingular
submatrices consisting of the same set of rows of the matrices for the approximating prob-
lems that converges to a singular submatrix of the limiting problem�is sufficient to ensure
that any convergent subsequence of optimal basic feasible solutions for the approximating
problems converges to an optimal bfs for the limiting problem.
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