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Abstract

Flexible manufacturing systems are often designed as ßowshops supported by au-

tomated material handling devices that facilitate routing among any two processors

of adjacent stages. This routing structure is complex, and results in excessive capi-

tal investment and costs of management. In this paper we propose a decomposition

of two stage ßowshops into smaller independent ßowlines that allow for unidirec-

tional routing only. We solve optimally the problem of minimizing makespan on

2 parallel ßowlines, by means of a dynamic programming algorithm (DP). Based

on DP we develop lower bounds on the throughput performance of environments

that consist of more than two ßowlines. We present several heuristic algorithms and

report their optimality gaps. Using these algorithms, we show that the decomposi-

tion of two stage ßowshops with complicated routing into ßowline-like designs with

unidirectional routing is associated with minor losses in throughput performance,

and hence signiÞcant savings in material handling costs.

Keywords: Hybrid Flowshops, Scheduling, Routing control, Dynamic programming.

∗Weatherhead School of Management, Dept. of Operations, Case Western Reserve University, Cleve-

land, OH 44106-7235
�The A. Gary Anderson Graduate School of Management, University of California, Riverside, CA

92521-0203

1



1 Introduction

Flexible manufacturing systems (FMS) coupled with cellular manufacturing is the pre-

ferred way of producing in medium to large volumes (see Maleki, 1991). The study of

scheduling problems in ßexible manufacturing systems has attracted signiÞcant atten-

tion in recent years including Afentakis, 1986, Erschler et al., 1985, Ghosh and Gaimon,

1992, Kouvelis and Vairaktarakis, 1998, Lee and Vairaktarakis, 1998, Shanker and Tzen,

1985, Stecke, 1985, 1992, and Wittrock, 1988, due to the importance of such systems for

small-to-medium batch manufacturing.

In many cases, the production system consists of several manufacturing cells each of

which is structured as a multistation ßowshop (see Baker, 1993, Blakewicz, 1993, and

Pinedo, 1995). A typical design for such cells is a multistage system where each stage

consists of multiple identical machines. Among the most popular ßowshop designs is the

hybrid ßowshop which we denote by HFSm1,m2 (see Figure 1). It consists of m1 machines

in stage 1, and m2 machines in stage 2. Each job consists of two tasks ai and bi that are

to be processed in this order in stages 1 and 2 respectively. The ai task can be processed

on any of the m1 machines of stage 1, and the bi task can be processed on any of the m2

machines of stage 2. As a result, the HFSm1,m2 system enjoys routing ßexibility.

The above descibed HFS system results in high throughput rates. These rates come

at the expense of sophisticated material handling systems that consist of a combination of

automated guided vehicles and automated transfer lines. Such handling systems usually

require major investment both in capital and management technology. In this paper we

present a way of decomposing the HFSm1,m2 design into smaller independent cells that

require unidirectional routing. The proposed design results to substantial reduction in

routing complexity (and hence savings in material handling costs), and simpliÞed man-

agement of the production system. Without loss of generality we assume that m1 ≤ m2

since the opposite case is symmetric. More speciÞcally, we decompose HFSm1,m2 into m1

independent units each of which is a hybrid ßowshop of the form HFS1,k where k is an

appropriate integer (see Figure 1). This decomposition of HFSm1,m2 has the advantage

of forcing unidirectional routing from the only stage 1 machine to the k stage 2 machines.

We refer to this design as Parallel HFS because it consists of several HFS1,k�s operated in

parallel. To the best of our knowledge, the PHFS design has not being studied in the liter-
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ature before. Our analysis shows that the scheduling task within each HFS1,k sub-design

is signiÞcantly simpler and more accurate than the corresponding task in HFSm1,m2
. In

addition, an allocation of jobs to the HFS1,k cells allows to manage each cell indepen-

dently thus focusing in on-time completion of a smaller subset of jobs. In contrast, a

delay on any machine of HFSm1,m2 may affect the throughput performance of the entire

production system.

In a nutshell, this article considers the following managerial question: How signiÞcant

is the deterioration in the makespan performance of PHFS (where the routing structure

is the simplest possible) as compared to the makespan performance of HFSm1,m2 (where

the routing structure is as complicated as possible for a 2-stage system)? As shown in

Section 5, the answer is that in the majority of cases that we experimented with, the

deterioration of the makespan performance of PHFS is less than 3%. This conclusion

can have signiÞcant impact on the process design used to implement 2-stage ßowshop

production systems.

In order to present the decomposition of HFSm1,m2 into the PHFS system, we Þrst

study a simpler but equally important design; the m parallel ßowlines design denoted by

mFL (see Figure 1). In the next section we formally deÞne the mFL design, review the

existing literature on the HFSm1,m2 and mFL systems, and provide an outline of the rest

of the paper.

2 Problem Description and Literature Review

The mFL design (see Figure 1) and the associated makespan problem are deÞned as

follows. Let J be a given set of jobs, where Ji = (ai, bi) for 1 ≤ i ≤ n. The jobs in J

are to be processed by a system of m parallel ßowlines L1, L2, . . . , Lm where each ßowline

is a 2-machine ßowshop (see Johnson, 1954), as in Figure 1. Our problem is to assign

the jobs in J to the m ßowlines, and then schedule the jobs assigned to each ßowline so

as to minimize makespan. Due to the fact that Johnson�s algorithm is optimal for the

2-machine ßowshop, the core of our problem is to identify an optimal assignment of jobs

in J to the m ßowlines. We refer to the above design and protocol of operations as the

mFL problem. The mFL design is a special case of PHFS, and has Þrst appeared in He

et al., 1996. In this, the authors consider a design that consists of several ßowlines (i.e.,
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traditional ßowshops with a single processor per stage) operated in parallel, motivated

by an application from the glass industry. They consider several product types, setup

times between different types, and no-wait in process. The latter constraint renders this

problem very different than mFL.

The mFL problem offers an alternative design for ßexible ßowshops with routing ßex-

ibility. In mFL, the production system is decomposed into m independent units or cells,

each of which can be managed independently. This approach is aligned with the principles

of cellular manufacturing that have gained polularity over the last few years. Admittedly,

the mFL design will incur a loss in throughput performance as compared to an equivalent

design that allows free routing between stages. In this paper we quantify this throughput

loss and assess the beneÞts of the simpliÞed routing control structure of mFL.

Note that when m1 = m2 = m, the HFSm1,m2 system has the same number and

layout of machines as the mFL design. These two systems differ only in the routing

control structure. Both the HFS and mFL designs are generalizations of the m parallel

identical machine environment (mP) where it is assumed that bi = 0 for every Ji ∈ J .
The mP environment has been well studied over the last 25 years by several researchers.

A review including most results in this area is given by Cheng and Sin, 1990. Garey and

Johnson, 1979, have shown that minimizing makespan in the mP environment is ordinary

NP-complete.
A great amount of research has been devoted to the HFS problem to minimize makespan.

A survey of articles on the problem of minimizing makespan in HFSm1,m2
that appeared

prior to 1993 is provided in Lee and Vairaktarakis, 1994 with signiÞcant detail. Also, the

authors present a heuristic algorithm for HFSm1,m2 , which has near optimal performance

for randomly generated problems (average relative gaps are less than 1%), and a worst

case error bound of 1 − 1
max{m1,m2} . This bound appears to be the best known bound

for HFSm1,m2 and its sub-design HFSm,1. Since 1993, the papers that appeared in the

literature include the following. Hoogeveen et al., 1996 prove that HFS2,1 is strongly

NP-complete (a problem that was open since the inception of the HFSm1,m2 problem)

thus settling the complexity of HFSm1,m2 completely. Guinet and Solomon, 1996 com-

pare the performance of several heuristics on hybrid ßowshops with 3 or 5 stages. For

the makespan objective they Þnd that the best among the heuristics considered in their
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study exhibits a relative deviation (from the lower bound) of about 8% on the average.

They also consider the performance of these heuristics in minimizing maximum tardiness.

Gupta et al., 1997 develop a branch and bound algorithm for HFSm,1, and present com-

putational results on problems with up to 20 jobs within 25-30 seconds on an IBM 3090

computer. Solomon et al., 1996 present 5 heuristics, and experiment with problems of

size 50, 150, and 300 jobs. The reported relative deviations from their lower bounds range

from 0.75% to 4.27% (on the average) depending on the heuristics, and the range of the

task processing times.

Before we proceed with the analysis of the mFL problem, we present a basic heuristic

algorithm (LV) for minimizing the makespan of HFSm1,m2 (see Lee and Vairaktarakis,

1994). This algorithm will be used later to decompose the HFSm1,m2 design into a PHFS

design which is a parallel implementation of ßowline-like units that support unidirectional

routing (see Figure 1). The LV heuristic utilizes the Þrst available machine rule (FAM).

In this, the job to be scheduled next on m parallel identical machines, is assigned to the

Þrst machine that becomes available i.e., the machine that Þnishes Þrst the job (if any)

previously assigned to it. Depending on the starting order S, the FAM rule produces dif-

ferent solutions. Also, the LV heuristic utilizes the last busy machine rule (LBM), which

is the mirror image of FAM. The LBM rule is described below for a given constant T > 0

and an ordering S of tasks {ci : 1 ≤ i ≤ n}.

LBM rule:

1. Set tk := T for k = 1, . . . ,m2.

2. Let ci be the last unscheduled task of S andMk a machine with largest tk. Schedule

the task ci on the machine Mk to Þnish at time tk.

3. Set tk := tk − ci and S := S − {ci}. If S 6= ∅ then goto 2 else Stop.

In the above rule, the value of tk is the time that the machine Mk becomes busy. In

step 2 we assign the task ci to a machine with largest tk, i.e. the last busy machine.

Hence, we call this rule the last busy machine rule. Also, note that the value of T is

only a reference point and has no effect on the allocation of tasks to machines. With this
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background we can present the LV algorithm.

LV algorithm

1. Apply the Johnson�s algorithm with respect to the processing times {( 1
m1
ai,

1
m2
bi) :

i = 1, 2, . . . , n}. Let S be the resulting sequence.

2. Apply the FAM rule on the stage 1 tasks of the sequence S

3. Apply the LBM rule on the stage 2 tasks of the sequence S

4. On each stage 2 machine Mk2, reorder the tasks assigned during step 3 so that no

task appears before another task that has a smaller completion time at stage 1. Let

Sk be the resulting order for k = 1, 2, . . . ,m2.

5. On each stage 2 machine Mk2, schedule the tasks in Sk in this order, as soon as

possible.

At step 1 of LV a sequence S of jobs is produced, at step 2 an assignment of ai

tasks to the stage 1 machines is made and at steps 3,4 and 5 the tasks of stage 2 are

scheduled. In particular, step 3 determines which tasks will be processed by each stage 2

machine, step 4 determines the order of stage 2 tasks within a stage 2 machine, and step

5 proceeds with the scheduling of the stage 2 tasks on stage 2 machines. Since Johnson�s

algorithm requires O(n log n) time, this is also the computational effort required by the
LV algorithm.

The outline of the rest of this paper is as follows. In Section 3 we develop a dynamic

programming algorithm that solves the 2FL problem optimally. We also report the aver-

age execution times required by this dynamic programming algorithm. In Section 4 we

develop lower bounds and heuristic algorithms for the mFL problem. Also, we perform

a computational experiment to compute the average performance of our heuristics on

randomly generated problems. In Section 5 we use the heuristics developed in Section 4

to decompose the HFSm1,m2 design into ßowline-like units. Then, we perform an exper-

iment to assess the throughput performance of mFL in comparison with HFSm1,m2 . We

conclude in Section 6 with guidelines on the formation of ßexible ßowshop manufacturing

systems.
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3 The 2FL problem

A set of jobs J = {J1, J2, . . . , Jn} is given and every job Ji consists of two tasks, with
processing time requirements ai and bi. We will use ai, bi to denote both the tasks and

the requirements of job Ji. All jobs are assumed to be available at time zero and no

preemption is allowed for the tasks. Each job in J must be processed exclusively by one

of two available ßowlines L1, L2, where each ßowline is a 2-machine ßowshop; see Figure

1. To maximize throughput, as well as the machine utilization of the 2FL system, we are

interested in scheduling the jobs in J to the two ßowlines L1, L2, so that the resulting

schedule minimizes makespan. Hence, the 2FL problem is equivalent to partitioning the

job set J into two subsets of jobs, say I1 and I2, and then dedicate the ßowline Lk to the

subset Ik, k = 1, 2. After resolving this assignment problem, scheduling on L1 and L2

is a simple task involving Johnson�s algorithm for minimizing makespan on a 2-machine

ßowshop; see Johnson, 1954.

Observe that in case that bi = 0 for all Ji ∈ J , our 2FL problem reduces to the problem
of minimizing makespan on two identical parallel machines. This scheduling problem is

known to be ordinary NP-complete (see Garey and Johnson, 1979), and therefore our
problem, since it contains the above problem as a special case, is NP-complete as well.
Assume that the set J = {J1, J2, . . . , Jn} is ordered according to Johnson�s order.

DeÞne the quantities:

pi = ai + bi.

Ai =
Pi
j=1 aj .

fi(I, S1, S2) = the optimal makespan value of 2FL for the jobs {J1, J2, . . . , Ji}, when the amount
of idle time on M11 is I, and the idle time after the last job of M21 and M22 is S1

and S2 respectively.

By deÞnition, S1 · S2 = 0 since the makespan value is attained on at least one of M21

andM22. More speciÞcally, if the makespan is attained onM21 we have S1 = 0, and if it is

attained onM22 we have S2 = 0. Also, in the above deÞnition of fi(I, S1, S2), the variables

I, S1, S2 take values from the interval [0, Pn], where Pn :=
P
i pi. These observations

indicate that the state space of the dynamic program (DP) to calculate fi(·, ·, ·) isO(nP 2n).
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The following DP algorithm is based on the fact that the optimal makespan fi(I, S1, S2)

is attained on at least one of M21 and M22 before the scheduling of Ji, and on at least

one of M21 and M22 after the scheduling of Ji ; thus producing 4 possible combinations.

DeÞnition 1 Let Ckr be the combination where the value fi(I, S1, S2) is attained by Lr

after the scheduling of Ji, and by Lk prior to scheduling Ji, k, r ∈ {1, 2}, k 6= r.
For each Ckr, we depict in Figure 2 the alternative schedule conÞgurations for the job

set {J1, J2, . . . , Ji−1}, that can result to Ckr after the insertion of Ji.
INSERT FIGURE 2 HERE

Evidently, there are two alternative schedule conÞgurations for C11. In C11 a), Ji is

assigned to L1, and in C11 b), Ji is assigned to L2 (in Figure 2, the dotted boxes indicate

the job Ji). Similarly, there are two conÞgurations for C22. In C21, the makespan is at-

tained on L2 prior to inserting Ji, and hence Ji must be inserted into L1 if the makespan

is to be attained on L1 after the insertion. Hence, there is a single conÞguration for C21.

Similarly, there is a unique conÞguration for C12. The four Ckr combinations motivate

the following recurrence relation.

Recurrence Relation: Let J1, J2, . . . , Jn be the set of jobs ordered according to Johnson�s

order. Then,
fi(I, 0, S2) =

= min


C11 : min


minI0≤ai{fi−1(I0, 0, S2 + I0 − pi)− I0}+ pi if I = bi

fi−1(I − bi + ai, 0, S2 − bi) + bi if I > bi

minS0
2
≥S2{fi−1(I, 0, S02) : S02 = S2 + bi + (Ai − 2fi−1(I, 0, S02) + I + S02)+}

C21 :

½
fi−1(I − S2 + ai, bi − S2, 0) + S2 if I > bi

min0≤S0
1
≤ai+bi fi−1(pi − S2, S01, 0) + S2 if I = bi

fi(I, S1, 0) =

= min


C12 : min


min0≤S0

2
≤bi fi−1(I − S1, 0, S02) + S1

min0≤S0
2
≤ai+bi−S1 fi−1(I − S1, 0, S02) + S1 if Ai + I − S1 + S02 > 2fi−1(I − S1, 0, S02)

0 and (Ai + I − S1 + S02 − 2fi−1(I − S1, 0, S02))+ + bi = S1 + S02

C22 :


minS0

1
≥I fi−1(I + ai, S01, 0) if I = S1 + bi

fi−1(I + ai, S1 + bi, 0) if I > S1 + bi

min0≤y≤ai{fi−1(I − bi − y, S1 − bi − y, 0) + y}+ bi if y = (Ai − 2fi−1(I − bi − y, S1 − bi − y, 0) + I0)+

Boundary Conditions:
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f1(I, S1, S2) =


p1 if (I, S1, S2) = (b1, 0, p1)

p1 if (I, S1, S2) = (p1, p1, 0)

∞ otherwise

Optimal Solution:

Let f ?n denote the optimal solution of DP with the above boundary conditions. Then

f ?n = min
I,S1,S2

fn(I, S1, S2).

Theorem 1 The recurrence relation for fi(I, S1, S2), along with the above boundary con-

ditions, produce the optimal makespan value for the 2FL problem.

All proofs are included in the appendix.

Complexity of the DP algorithm:

As indicated earlier, the state space of DP is O(nP 2n). It is easy to check that the
effort required at every iteration of the DP is of order O(Pn). Therefore, the complexity
of the DP is O(nP 3n).

3.1 Computational Performance of The DP Algorithm

We coded the DP algorithm in C++ and tested its computational efficiency on a Pentium

133 processor. For each of the problem sizes n = 20, 30, 40 and 50 we randomly generated

50 test problems and computed the amount of time required to solve each problem. In

Table 1 we report the average (over the 50 problems) computational time for each value of

n. To examine the effect of the variability in processing time durations into computational

efficiency, we experimented with the ranges [1, 10] and [1, 20] for the durations of ai and bi.

For example, using the range [1, 10], we randomly selected a value for ai from a discrete

uniform distribution on [1, 10]. Similarly for the range [1, 20].

INSERT TABLE 1 HERE

As evidenced by Table 1 the DP algorithm requires an average of 162.5 seconds for

the 8 size/ratio combinations considered. As expected, the range [1, 20] results to greater

CPU times due to the dramatic increase in the number of states of the dynamic program.

The average over the problems generated for the range [1, 10] is 36.8 seconds, while the

corresponding average for the range [1, 20] is 288.2 seconds. We can observe that an
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increase of n by 10, results to an increase in CPU times by a factor of roughly 3. Since

n = 50 is considered a relatively large problem size, and given the CPU times of Table 1,

the efficiency of the DP algorithm appears to be adequate for most practical applications.

4 Lower Bounds and Heuristics for the mFL Problem

In this section we develop lower bounds for the mFL problem in subsection 4.1. In

subsection 4.2 we develop a number of heuristic algorithms that exploit a variety of

characteristics of the mFL system. Our heuristics are evaluated against the lower bounds

of subsection 4.1, by computing the average relative gaps on randomly generated problems.

Our experiment is reported in 4.3.

4.1 Lower bounds

Given the set J of jobs, we can construct an auxilliary 2-machine ßowshop problem (AFS)

for mFL, by replacing ai by
1
m
ai, and bi by

1
m
bi. Hence, the AFS problem is a makespan

problem on a single ßowline. Let CAFS be the optimal makespan value obtained by the

application of Johnson�s algorithm on AFS (see Johnson, 1954). Then, if CmFL denotes

the optimal makespan value for mFL, we have the following result.

Lemma 1 CAFS ≤ CmFL.
The above lemma is used to develop a better lower bound for mFL, when m is a

power of 2; i.e. m = 2k for k ≥ 1. As we will show, the case m = 2k is not restrictive

at all, since with minor additional computational effort we can transform problems with

2k−1 < m < 2k to equivalent problems with m = 2k.

The case m = 2k

Let AFL be the auxilliary problem on two ßowlines (2FL) where ai is replaced by

2ai/m and bi is replaced by 2bi/m. Let us denote by CLB the makespan value obtained

by the application of DP on AFL. Then, we have the following result.

Theorem 2 CLB ≤ CmFL.

The case m 6= 2k
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Consider the case where 2k−1 < m < 2k. Then, the mFL problem can be transformed

into an equivalent (2k)FL problem by adding to the job set J , 2k −m dummy jobs with

processing requirements (0, B), and 2k − m dummy jobs with processing requirements

(B, 0), where B = CmFL. Then, an optimal schedule S
2k for (2k)FL induces an optimal

schedule for mFL by disregarding the 2k−m ßowlines of S2
k
that are assigned to process

the 2(2k−m) dummy jobs. Since the optimal makespan CmFL is unknown, we can perform
bisection search on B, in the range

B ∈ [ 1
m

nX
i=1

pi,
nX
i=1

pi].

In this construction, the optimal makespan of the mFL problem, is the least value of B

for which CmFL = B.

We can use the above observation to adapt Theorem 2 to the case where m 6= 2k, by
applying our DP algorithm to the AFL problem on the revised job set that except for

(2ai/m, 2bi/m), 1 ≤ i ≤ n, includes 2k − m dummy jobs with processing requirements

(0, B 0) and 2k−m dummy jobs with processing requirements (B0, 0). In this case we have

that

B0 ∈ [ 2
m2

nX
i=1

pi,
2

m

nX
i=1

pi],

and the optimal value for B0 is the least value for which CLB = B0. Since the computa-

tional effort required by DP is O(nP 3n), the described bisection search scheme can provide
a lower bound to the mFL problem for m 6= 2k in O(nP 3n logPn) time.

4.2 Heuristic algorithms

In this subsection we develop and test heuristic algorithms for the mFL problem. Later

on we compute the relative deviation of the heuristics from the lower bound CLB. Our

Þrst heuristic combines the two tasks ai and bi of each job into a single task pi = ai + bi,

and partitions J into m parts. Each part is then assigned to a single ßowline of mFL.

Heuristic H1

1. Let S be the Johnson�s order for the jobs.
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2. Apply the Þrst available machine rule to assign the jobs pi = ai + bi, 1 ≤ i ≤ n, on
m parallel identical machines (mP ). Let Ak be the jobs allocated to machine Mk of

mP , 1 ≤ k ≤ m.

3. Schedule the jobs in Ak onto the k-th ßowline Lk, 1 ≤ k ≤ m, according to Johnson�s
order.

The computational effort required by steps 2 and 3 of H1 is O(n) and hence the com-
plexity of H1 is O(n log n) due to the sorting required at step 1. The following heuristic
is a reÞnement of the FAM rule for the mFL environment. Namely, H2 assigns the Þrst

unscheduled job, say Ji, onto the Þrst available ßowline (FAFL rule); i.e. to the ßowline

that results to the least makespan value after the insertion of Ji.

Heuristic H2

1. Let S be the Johnson�s order for the jobs.

2. Apply the FAFL rule with respect to the order S.

The computational effort required by step 2 of H2 is O(n) and hence the complex-
ity of H2 is O(n logn) due to the sorting required at step 1. A different line of heuristic
schedules is obtained by our next heuristic where we start off with the Johnson order with

respect to the original processing times of (ai, bi). Then, we break the resulting schedule

in m chunks each of which is assigned to a ßowline.

Heuristic H3

1. Let S be the Johnson�s order for the jobs.

2. Apply bisection search on C, in the range [ 1
m

P
i pi,

P
i pi].

3. for k := 1 to m do

assign on Lk as many leading unscheduled jobs of S as can Þt in the time interval

[0, C].

12



The above heuristic is analogous to the multiÞt algorithms for parallel identical ma-

chine scheduling (a survey of such algorithms is provided in Cheng and Shin, 1990). If

a feasible schedule (i.e. a schedule where all jobs are assigned to the m machines) can

be found on C periods, then the bisection search will try smaller values. Else, the search

will be limited to values greater than C. Note that the schedule produced by H3 as-

signs to each ßowline a chunk of consecutive jobs of the Johnson�s schedule with respect

to processing times (ai, bi). Step 2 of H3 results to O(logPn) trial makespan values, and
step 3 requires O(n) computational effort. Since the effort required by step 1 is O(n logn),
the complexity of H3 is O(n logPn).
Our next heuristic exploits the allocation produced by the application of the DP on

the AFL problem. Since the AFL problem led us to a lower bound for mFL, it seems

reasonable to use it for the construction of near optimal schedules. In the following de-

scription we assume that m is a power of 2; i.e. m = 2k. If not, we described in Section

4.1 how we can transform our problem to an equivalent one that satisÞes the power of 2

condition.

Heuristic H4

The tree T of Figure 3 facilitates our description of H4. At level 0 we apply DP with

respect to the processing times (2ai/m, 2bi/m). The DP algorithm partitions the job set

J to two subsets. The jobs that are going to be processed by L1, and the jobs that

are going to be processed by L2 (recall that the DP solves optimally the 2FL problem).

Those jobs allocated to L1 correspond to the jobs that will be processed on the upper half

(m/2 machines) of mFL; we refer to this subproblem as F k1 , where k = log2m. The jobs

allocated to L2 by DP are the jobs that will be processed on the lower half of mFL; we

refer to this subproblem as F k2 . At level 1, we apply the DP algorithm on the subproblem

F k1 ; thus allocating jobs to the Þrst and second quarter of machines of mFL. Similarly,

the application of the DP on F k1 allocates jobs to the third and fourth quarter of machines

of mFL. In every level of the tree T of Figure 3 we indicate the processing times utilized

by DP. The leaves of T indicate the allocation of jobs to single ßowlines and hence the

DP algorithm is utilized only by the nodes of the levels 0 through k− 1 of T . A schedule
is provided for each of the m ßowlines represented by leaves, from the DP applications of
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the previous level. There are 2k − 1 or O(m) nodes in T that are not leaves. Since DP is
applied once for each such node and since each application of DP requires O(nP 3n) time,
the complexity of H4 is O(mnP 3n).

INSERT FIGURE 3 HERE

Heuristic H5

To reduce the computational requirements while capturing the main idea of H4, we

develop the heuristic H5. This heuristic is identical to H4 except that the application of

the DP algorithm on each node of T , is replaced by H1, H2, and H3. Subsequently, we

use the minimum makespan schedule among the 3 schedules obtained by H1, H2, and H3.

Arguing as before, the complexity of H5 is O(mn log n).
In the next subsection we report the average performance of all of the above heuristics.

4.3 Computational performance

To evaluate the performance of our heuristics we performed an experiment where we

considered test problems with m = 2, 4, or 8 ßowlines, and n = 20, 30, 40, or 50 jobs.

For each combination of m,n values we randomly generated 50 problems using the ranges

[1, 10] and [1, 20] for the processing time durations ai and bi. These durations were

drawn as described in Section 3. For each of the 50 test problems, we recorded the

relative gap CH−CLB
CLB

. To compute this gap we compute CH using the heuristic H ∈
{H1, H2, H3, H4, H5}, and the lower bound CLB described in Theorem 2. We also recorded
the best gap (denoted by Best of H1 − H3, H5 among the 4 heuristics H1,H2,H3 and
H5. The heuristic H4 was not included in the calculation of Best H, because H4 has

non-polynomial complexity; recall that it utilizes m− 1 applications of the DP algorithm
along with the tree structure of Figure 3. In Table 2 we report the average (over the 50

problems) relative gaps for all the m,n and range combinations considered.

Note that the case m = 2 corresponds to evaluating the algorithms H1, H2, H3, and

H5, as heuristic approaches for the 2FL problem that can be solved optimally using the

DP algorithm. Hence, for m = 2 the reported relative gaps indicate, in fact, relative

deviation from optimality. Observe that H4 coinsides with the DP algorithm for m = 2,

and hence the resulting deviations equal 0.

TABLE 2 GOES HERE
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The most important Þnding presented by Table 2 is that H4 has near optimal perfor-

mance with an average relative gap of 3.3% for the range [1, 10] and 4.1% for the range

[1, 20]; these averages are taken over the combinations where m = 4 and m = 8 only.

This means that although H4 may be time consuming (especially for larger values of n),

it provides an excellent solution approach for mFL.

The heuristics H1 and H2 have very similar performance. The heuristic H3 is inferior

to H1 and H2 for the combinations where m = 2 and m = 4. In general, none of the

heuristics H1, H2 and H3 consistently outperforms the others.

As expected, the heuristic H5 dominates the heuristics H1,H2 and H3; recall that

H5 uses the tree T of Figure 3 where each node uses the best solution among the ones

obtained by H1, H2 and H3. However, since the subproblems corresponding to each node

of T consider processing times of the form ( ai
2k
, ai
2k
) rather than the actual processing times

of (ai, bi), it is not unlikely that one of H1, H2 or H3 performs better than H5. As a

result, the values recorded for Best of H1 − H3,H5 in Table 2, although close to the
corresponding values of H5, are not identical.

Focusing on the results obtained for Best H, we conclude that it has satisfactory

performance for all combinations except for m = 8 and n = 20, 30. All other combinations

provide an overall average gap of 11.3%. Evidently, Best of H1−H3, H5 has unsatisfactory
performance for (m,n) combinations with large values of m and small values of n. For

such combinations we suggest using H4 since the corresponding CPU requirements are

not high; recall from Table 1 that the time requirements of DP are low for small values

of n.

In conclusion, the results obtained for Best of H1 −H3,H5, and H4 indicate that by
using the right algorithms for each (m,n) combination, we can solve fast and accurately

mFL problems with relatively large values of m and n.

5 Decomposing Hybrid Flowshops to Flowline-like Designs

The routing ßexibility of the HFSm1,m2 environment often comes in the expense of sophis-

ticated material handling expenditures for automated transfer lines, automated guided

vehicles, and the managing technology required for this equipment. In this section we

offer an alternative ßowshop design for HFSm1,m2 with simpler routing structure and
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only minor loss in throughput performance. Namely, we consider the decomposition of

HFSm1,m2
into m1 smaller independent units (we assume m1 ≤ m2) each of which is a

hybrid ßowshop of the form HFS1,k, where k is an appropriately selected number (see

Figure 1). The assumptionm1 ≤ m2 is not restrictive since the casem1 > m2 is symmetric

and hence all the results developed in this section apply.

The above decomposition signiÞcantly simpliÞes the managing of HFSm1,m2
, by de-

composing it into smaller manufacturing cells. As a result, the routes available to a job

coming off stage 1 are signiÞcantly less than in HFSm1,m2 which usually translates to

signiÞcant savings in material handling costs. However, the above savings come in the

expense of a slight deterioration in throughput performance. In this section we show that

in most cases the throughput loss is insigniÞcant compared to the beneÞts provided by

the simplicity of the material handling structure and the associated cost savings.

Intuitively it is beneÞcial to distribute the workload of HFSm1,m2 so that each machine

can handle about the same workload. This is in line with similar conclusions for scheduling

environments where balanced designs result to improved throughput performance. For

this reason, we assume that the number k of machines in HFS1,k is either dm2

m1
e or dm2

m1
e−1

(although our approach is applicable to any arbitrary decomposition). To further simplify

our exposition, we assume that m2 is an integral multiple of m1, i.e. m2 = km1. If a

HFSm1,m2 design does not possess this property, we can introduce km1−m2 dummy stage

2 machines along with km1 −m2 dummy jobs with processing time requirements (0, B),

where B is a trial makespan value. As in Section 4.1, bisection search on B can identify

the least value of B for which there exists a feasible decomposition of HFSm1,m2 into m1

units of the form HFS1,m2
m1

, so that the resulting makespan value equals B. Moreover,

without loss of generality we can retain our assumption that m1 is a power of 2. We refer

to the decomposition problem as PHFS since it decomposes the HFS design to parallel

HFS sub-designs.

All the algorithms developed in Section 4.2 for the mFL problem can be extended to

the PHFS as follows.

Heuristics for PHFS

1. Apply the heuristic H, H ∈ {H1, H2,H3,H4,H5} to them1FL problem with respect
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to the processing times (ai,
m2

m1
bi). Let Ar be the set of jobs assigned to Lr, 1 ≤ r ≤

m1.

2. For r = 1 to m1 do

apply the LV algorithm to schedule the jobs in Ar onto a HFS1,m2
m1

unit.

At Step 1 of the above algorithm we use any of the heuristics H1, H2, H3, H4 or H5 to

partition the job set J into m1 parts A1, A2, . . . , Am1 . For each 1 ≤ r ≤ m1, we utilize

the algorithm LV of Lee and Vairaktarakis, 1995, (see Section 2) to schedule the jobs

in Ar onto a HFS1,m2
m1

sub-design. The LV algorithm appears to have the best known

performance for the HFS1,m problem to minimize makespan, with worst case error bound

1− 1
m
and near optimal performance on randomly generated problems (the average relative

gaps are less than 0.5%).

Let CPHFS be the optimal makespan value for the PHFS problem. Then, the relative

gaps of the heuristics for PHFS described above are attributed to two sources. Namely,

suboptimality of the heuristic H ∈ H1, H2, H3, H4,H5 for the m1FL problem, and subop-

timality of the LV heuristic for the HFS1,m2
m1

problem. According to our comment above,

the worst case error bound for the latter source of suboptimality is 1− m1

m2
. In Table 3 we

report our computational experiment to assess the throughput performance of our heuris-

tics for PHFS. Table 3 was developed in an identical fashion as Table 2, and it reports

the relative gap of the makespan CPHFS of our heuristics for the PHFS problem from the

lower bound CHFL computed as follows.

Let HFL be the auxilliary problem on two ßowlines (2FL) where ai is replaced by

2ai/m1 and bi is replaced by 2bi/m2. Then, a proof similar to that of Theorem 2 veriÞes

the following result.

Theorem 3 CHFL ≤ CPHFS.

In Table 3 the m1×m2 designs considered are 2×4, 2×8, 4×8 and 4×16. The 4×16
design for instance is decomposed by our algorithms to 4 independent designs of the form

1× 4. Similarly, all the remaining designs are decomposed to as many subsystems as the
number m1 of stage 1 machines.
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INSERT TABLE 3 HERE

The observations stemming from Table 3 are similar to those of Table 2. The heuristic

H4 has superior performance than the best of H1, H2, H3 and H5. Recall that the compu-

tational requirements of H4 are signiÞcantly greater than any of the rest 4 heuristics. It

appears that the Best of H1−H3, H5 provides reasonable answers for most cases, except
when the problem size is small e.g., n = 20 or the number m1 +m2 of total machines in

the system is excessively large e.g., when m1 ×m2 = 4× 16. However, in both cases H4
provides good average relative gaps. The average relative gap of H4 over all the combina-

tions considered is 3.55%, of which 4% is atrributed to the range [1, 20] for the processing

times of ai and bi, while the corresponding average gap for the range [1, 10] is 3.10%.

In the next subsection we compare the throughput performance of the two production

systems contrasted in this research. Namely, we examine how faster is the HFSm1,m2 envi-

ronment, as compared to the corresponding PHFS system that consists ofm1 independent

modules of the form HFS1,m2
m1

.

5.1 The effect of routing ßexibility on Throughput

It has become clear that obtaining optimal algorithms for the PHFS and HFSm1,m2

environments is extremely difficult. As a result, obtaining the exact gap of the throughput

performance of these two environments is impossible. Nevertheless, we can estimate those

gaps by using the H4 heuristic to obtain CPHFS, and the LV heuristic (see Section 2) to

obtain CLV . As documented in Lee and Vairaktarakis, 1995 the LV heuristic provides

near optimal solutions for the problem of minimizing makespan in HFSm1,m2 . Also, this

research shows that H4 provides near optimal solutions for the PHFS problem. Hence,

instead of using optimal algorithms (that are unavailable), we use the best available

heuristics.

In Table 4 we report the average (over 50 randomly generated problems) relative gaps

(CPHFS − CLV )/CLV for the problem sizes n = 20, 30, 40 and 50 jobs, and the designs

2 × 2, 2 × 4, 2 × 8, 4 × 4, 4 × 8, and 4 × 16. The 2 × 4 design for instance, is viewed
by HFS2,4 as a two stage system with free routing between the 2 stage 1 machines and

the 4 stage 2 machines, while the corresponding PHFS system is viewed as 2 independent

HFS1,2 systems. Similarly for the remaining m1 × m2 values. In this experiment, for
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every randomly generated problem the CPHFS and CLV makespan values are obtained

for the same scenario of processing times. These processing times are uniformly selected

from the range [1, 20].

INSERT TABLE 4 HERE

It becomes apparent that the throughput performance gaps of PHFS and HFSm1,m2

are surprisingly small, and they become negligible as the number of jobs increases. In

particular, for n = 50 the average throughput performance gap is 1.33%. In light of the

fact that the corresponding gap for n = 20 is 4.06%, it may be marginally beneÞcial to

use the HFSm1,m2 system for batches of 20 or fewer jobs. Another trend exhibited by the

data of Table 4 is that the performance gaps increase with the total number of machines

in the system, m1 +m2.

Overall, our results tend to indicate that investing in sophisticated material control

structures and multidirectional routing offers minute throughput increases over a unidi-

rectional routing structure that appropriately decomposes the machines to independent

production cells.

6 Conclusion

This paper examined the ramiÞcations of free routing between adjacent stages of ßowshop

production systems. We found that the throughput beneÞts of such designs are marginally

better than ßowline-like designs that employ unidirectional routing and decomposition of

the production system into small independent cells. We provided algorithms that can be

readily utilized to attain ßowline-like decompositions within the limits of today�s comput-

ing capabilities. These algorithms are supported by detailed computational experiments.

Our future research will be directed towards investigating the value of other forms of ßex-

ibility (such as material handling ßexibility) for ßowshop as well as other manufacturing

protocols.
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Appendix

Proof of Theorem 1:

Throughout this proof we refer to Figure 2. We denote by fi−1(I 0, S 01, S
0
2) the makespan

value of a schedule prior to the insertion of Ji, and by fi(I, S1, S2) the corresponding

makespan after the insertion of Ji. The cases C11, C12, C21, and C22 are analyzed sepa-

rately below.

Case C11

In this case we distinguish the subcases where a) Ji is scheduled on L1, and b) Ji is

scheduled on L2.

subcase a): In this subcase we have that I ≥ bi. If I = bi, then we must have ai ≥ I 0.

Then, the idle time on M22 increases by bi + ai − I 0 after the insertion of Ji, and hence
S2 = S

0
2 + pi − I 0. Also, the makespan of M21 increases by pi − I 0. Hence,

f(I, 0, S2) = min
I0≤ai

fi−1(I 0, 0, S2 − pi + I 0) + pi − I 0 if I = bi.

On the other hand, if I > bi, then we must have that ai < I 0. More speciÞcally, in

this case we have that I 0 = I − bi + ai. Also, the makespan of M22 increases by bi and

hence S 02 = S2 − bi. Therefore,

f(I, 0, S2) = fi−1(I − bi + ai, 0, S2 − bi) + bi if I > bi.

subcase b): When Ji is scheduled on L2, we have that I
0 = I and

fi(I, 0, S2) = min
S02≥S2

fi−1(I, 0, S 02),

where

S 02 = S2 + bi + (Ai − 2fi−1(I, 0, S 02) + I + S 02)+.

The term (Ai − 2fi−1(I, 0, S 02) + I + S 02)+ indicates the idle time induced to M22 by the

scheduling of ai on M12.

Combining the 2 subcases of C11 we get the recurrence relation:

f(I, 0, S2) = min


minI0≤ai{fi−1(I0, 0, S2 + I0 − pi)− I0}+ pi if I = bi

fi−1(I − bi + ai, 0, S2 − bi) + bi if I > bi

minS0
2
≥S2{fi−1(I, 0, S02) : S02 = S2 + bi + (Ai − 2fi−1(I, 0, S02) + I + S02)+}
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Case C21

This case holds only iff

max{fi−1(I 0, S01, 0)− I 0 + ai, fi−1(I 0, S 01, 0)− S 01}+ bi ≥ fi−1(I 0, S01, 0) (1)

or equivalently,

max{pi − I 0, bi − S01} ≥ 0.

We distinguish two subcases for C21; namely i) I > bi and ii)I = bi. In i), we have that

bi = S
0
1 + S2, and I + ai = I

0 + S2. Hence,

fi(I, 0, S2) = fi−1(I + ai − S2, bi − S2, 0) + S2 if I > bi.

In subcase i), the relation (1) is equivalent to max{S2 − I + bi, S2} ≥ 0 which holds true
because S2 ≥ 0 by deÞnition.
In subcase ii) the idle time inserted on M21 after the insertion of Ji is ai − (I 0 − S 01),

and hence S 01 + S2 = bi + ai − (I 0 − S 01) or I 0 = pi − S2. Also, it is true that S 01 ≤ ai + bi
and hence

fi(bi, 0, S2) = min
0≤S01≤ai+bi

fi−1(pi − S2, S 01, 0) + S2 if I = bi.

In this subcase, the relation (1) is equivalent to max{S2, bi − S 01} ≥ 0 which holds always
true.

Combining the recurrence relations for the subcases i) and ii), we get

fi(I, 0, S2)

 fi−1(I − S2 + ai, bi − S2, 0) + S2 if I > bi

min0≤S01≤ai+bi fi−1(pi − S2, S 01, 0) + S2 if I = bi.

Case C12

This case holds only iff

max{Ai−1−(fi−1(I 0, 0, S 02)−I 0)+ai, fi−1(I 0, 0, S 02)−S 02}+bi ≥ fi−1(I 0, 0, S 02) (2)

Hence, we distinguish the subcases where

i) Ai − fi−1(I 0, 0, S 02) + I 0 ≤ fi−1(I 0, 0, S02)− S02, and
ii) Ai − fi−1(I 0, 0, S 02) + I 0 > fi−1(I 0, 0, S 02)− S 02.

23



In i), the insertion of ai into L2 does not increase the idle time onM22. In this subcase

the relation (2) is equivalent to bi ≥ S 02. We have that bi = S1 + S
0
2, and hence the

condition (2) is veriÞed. Also, we have that I = I 0 + S1. Hence,

fi(I, S1, 0) = min
0≤S02≤bi

fi−1(I − S1, 0, S 02) + S1.

In ii), the insertion of ai into L2 increases the idle time on M22. Since I = I 0 + S1,

the additional idle time on M22 is given by (Ai + I − S1 + S 02 − 2fi−1(I − S1, 0, S 02))+. To
ensure that only the right combination of values of S1, S

0
2 and I are considered by the

recurrence relation, we need to ensure that

(Ai + I − S1 + S 02 − 2fi−1(I − S1, 0, S02))+ + bi = S1 + S02

which indicates that the newly inserted idle time on M22 plus bi equal S1+S
0
2; see Figure

2. With the above observations we get that

fi(I, S1, 0) = min
0≤S02≤ai+bi−S1

fi−1(I − S1, 0, S 02) + S1,

given that (Ai+ I −S1+S 02− 2fi−1(I −S1, 0, S 02))++ bi = S1+S 02 and Ai+ I −S1+S02 >
2fi−1(I − S1, 0, S 02).
The following comment should be made for the range of values of S 02. Note that

S1 + S
0
2 ≤ ai + bi and hence S 02 ≤ ai + bi − S1. Combining i) and ii) we get the desired

recurrence relation for C12.

Case C22

In this case we distinguish the subcases where a) Ji is scheduled on L1, and b) Ji is

scheduled on L2.

subcase a): This subcase holds iff after the insertion of Ji, M22 Þnishes after M12, i.e.

max{fi−1(I 0, S01, 0) + ai − I 0, fi−1(I 0, S 01, 0)− S 01}+ bi + S1 = fi−1(I 0, S01, 0),

or equivalently

max{ai + bi − I 0, bi − S01} = −S1. (3)

In this subcase we have that I 0 = I + ai, and hence the ßowshop condition (3) becomes

min{I, S 01} = S1 + bi. (4)
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Hence,

S1 + bi =

(
I if I ≤ S 01
S 01 if I > S 01.

Observing that fi(I, S1, 0) = fi−1(I 0, S 01, 0) in this case, we get the recurrence relation

fi(I, S1, 0) = min

(
minS01≥I fi−1(I + ai, S

0
1, 0) if I = S1 + bi

fi−1(I + ai, S1 + bi, 0) if I > S 01 = S1 + bi
.

subcase b): The insertion of Ji into L2, induces (Ai − 2fi−1(I 0, S01, 0) + I 0)+ units of idle
time onM22, and the makespan ofM22 increases by bi+(Ai−2fi−1(I 0, S01, 0)+I 0)+. DeÞne

y = (Ai − 2fi−1(I 0, S 01, 0) + I 0)+.

Then, we have that I = I 0+ y+ bi, and S1 = S 01+ y+ bi. Also, observe that the idle time

y cannot exceed ai. Hence,

fi(I, S1, 0) = min
0≤y≤ai

{fi−1(I − bi − y, S1 − bi − y, 0) + y}+ bi.

Combining the recurrence relations for the above 4 cases, we get the recurrence rela-

tion stated in the theorem. This completes the proof of the theorem. 2

Proof of Lemma 1:

Let S? be an optimal schedule for mFL. Let S1 be the nondecreasing order of completion

times of ai tasks in S
?. We can use the order S1 to generate a schedule S for AFS as

follows.

Schedule the ai/m tasks on the upstream machine of AFS according to the order

S1. Then, schedule the bi/m tasks on the downstream machine of AFS according to the

order S1. The schedule S constructed in this way is not necessarily optimal for AFS

and in general it is not a permutation schedule. Let CS denote the makespan of the

schedule S constructed above. Without loss of generality, we reorder the jobs so that

S1 = {a1, a2, . . . , an}. Then, due to the order S1 we have that the task ai/m completes in

S at time

C 0i =
1

m

X
j≤i
aj ≤ Ci

where Ci is the completion time of ai on S
?.
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For the bi/m tasks we can assume that they are scheduled contigously so that the last

task Þnishes at time CmFL. Then, the task bi/m starts in S at time

s0i = CmFL −
1

m

X
j≥i
bj,

while bi starts in S
? at time si ≤ s0i, due to the order S1 and the fact that all bj tasks

with j ≥ i start in S? after ai.
Therefore, for every 1 ≤ i ≤ n we have that C 0i ≤ Ci, and si ≤ s0i. These rela-

tions mean that the ßowshop constraints for S are satisÞed when the last bi/m task of

AFS is scheduled to Þnish at time CmFL. Hence, CS ≤ CmFL. However, the makespan

value CAFS produced by Johnson�s algorithm is optimal for the AFS problem and hence

CAFS ≤ CS ≤ CmFL. This completes the proof of the Lemma. 2

Proof of Theorem 2:

Let S? be an optimal schedule for mFL. Apply Lemma 1 on the Þrst m/2 ßowlines of the

mFL environment. Then, the auxilliary ßowshop problem, say AFS1, is the 2-machine

ßowshop where the processing times of all tasks assigned to the Þrst m/2 ßowlines of

mFL are multiplied by 2. Equivalently, (ai, bi) is replaced in AFS1 by (2ai/m, 2bi/m) iff

Ji is assigned to one of the Þrst m/2 ßowlines of mFL in S
?. Let CAFS1 be the makespan

obtained by the Johnson�s algorithm for the AFS1 problem. Then, by Lemma 1 we have

that CAFS1 ≤ CmFL since CmFL is the makespan of S?. Similarly, we deÞne the auxilliary
ßowshop problem AFS2 for the last m/2 ßowlines of mFL. Let CAFS2 be the resulting

makespan value. Then, CAFS2 ≤ CmFL.
Note that the schedules obtained by the AFS1 and AFS2 problems, provide a feasible

solution for the 2FL problem with processing time requirements of (2ai/m, 2bi/m), 1 ≤
i ≤ n. However, this solution is not necessarily optimal for this 2FL problem. By

Theorem 1, the optimal makespan value for the 2FL auxilliary problem equals CLB, and

hence CLB ≤ max{CAFS1, CAFS2} ≤ CmFL. This completes the proof of the theorem. 2
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Size/Range [1, 10] [1, 20]

20 4.5 27.9

30 15.1 92.4

40 41.3 295.4

50 86.3 737.3

Table 1: Average execution times (in seconds) of the DP algorithm for 2FL.

Heuristics

# of # of
CH−CLB

CLB

f-lines jobs H1 H2 H3 H5 Best of H1-H3, H5 H4

m n [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20]

2 20 3.4 4.3 5.3 4.0 21.7 21.4 2.8 2.9 2.8 2.9 0 0

30 1.5 3.7 1.2 2.5 20.1 23.8 0.6 1.8 0.6 1.8 0 0

40 2.4 2.3 1.0 1.4 21.7 21.2 0.7 1.0 0.7 1.0 0 0

50 6.7 1.6 6.2 1.9 30.8 24.8 2.0 0.9 2.0 0.9 0 0

4 20 17.3 13.2 14.9 15.2 37.6 34.4 13.2 13.8 9.8 11.4 3.3 4.4

30 11.4 9.5 12.1 9.0 27.3 28.6 9.1 8.8 7.2 7.1 2.8 3.7

40 9.4 6.2 6.7 5.2 27.2 25.5 6.5 5.7 5.6 3.5 2.1 3.2

50 4.9 4.9 5.2 3.5 25.9 30.3 3.9 3.9 3.4 2.4 1.9 2.6

8 20 49.3 48.7 48.4 54.1 61.4 56.5 46.6 56.7 35.2 41.4 5.1 6.2

30 28.8 30.1 34.2 33.7 48.2 46.0 25.7 24.9 21.3 18.6 4.9 5.8

40 16.9 20.0 15.1 20.4 35.8 41.3 24.8 22.2 12.8 15.9 4.1 4.0

50 16.7 15.6 15.5 16.1 38.0 40.5 14.5 11.1 11.2 8.4 2.2 3.1

Table 2: Relative gaps of heuristic algorithms for the mFL problem
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PHFS # of Heuristics

design jobs
CPHFS−CHLB

CHLB

m1 ×m2 n H1 H2 H3 H5 Best of H1-H3, H5 H4

[1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20] [1, 10] [1, 20]

2×4 20 9.1 10.4 11.2 10.9 26.5 25.8 7.3 6.9 7.4 5.8 0.5 1.8

30 8.0 6.3 7.1 6.4 23.2 24.7 5.4 6.3 4.5 4.1 0.2 0.8

40 5.2 4.1 4.2 3.5 22.9 23.2 3.8 4.2 2.9 3.1 0.1 0.5

50 5.0 3.8 3.9 2.3 28.4 27.4 3.1 1.5 2.4 1.4 0.1 0.3

2×8 20 18.5 15.1 17.2 17.0 47.9 45.9 14.1 14.8 10.7 12.6 3.9 5.1

30 12.0 11.2 12.9 10.3 36.4 39.2 9.3 9.9 7.4 8.8 3.1 4.4

40 10.5 7.3 6.9 5.6 31.3 36.1 6.9 6.5 5.7 3.9 2.5 3.6

50 7.6 5.3 5.8 4.3 32.4 40.4 4.8 4.3 4.2 2.7 2.0 2.8

4×8 20 20.3 17.3 19.4 18.9 59.2 56.3 15.3 16.6 14.4 16.0 5.9 7.4

30 12.6 12.9 13.6 11.7 45.6 51.2 9.5 10.8 9.1 10.1 4.2 5.5

40 11.8 8.4 7.3 6.1 40.1 47.4 7.2 7.0 5.9 6.2 3.3 4.0

50 9.7 6.1 8.4 5.2 41.1 52.2 5.7 4.1 5.2 3.0 1.9 2.5

4×16 20 52.9 51.3 53.4 57.5 68.3 70.4 47.4 57.9 39.2 49.4 7.9 8.7

30 30.1 32.8 35.1 36.1 59.6 66.3 24.2 23.8 19.6 21.4 6.3 7.7

40 18.8 22.1 15.8 20.9 46.2 60.4 20.5 22.6 14.8 18.5 4.2 5.0

50 21.4 16.7 15.6 17.7 45.1 55.2 15.1 12.0 12.1 11.6 3.6 3.9

Table 3: Relative gaps of heuristic algorithms for the PHFS problem

CPHFS−CLV
CLV

Flowline design: m1 ×m2

n 2×2 2×4 2×8 4×4 4×8 4×16
20 2.8 1.2 5.2 3.8 5.1 6.3

30 2.1 0.7 3.5 2.9 3.6 4.7

40 1.7 0.3 2.0 2.2 1.8 3.0

50 1.3 0.1 1.4 1.8 1.2 2.2

Table 4: Relative deviation of the throughput performance of Best from HFSm1,m2
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