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Competition and Diversification Effects in Supply Chains with

Credit Risk

Abstract

We study the effects of credit risk in a supply chain where one retailer deals with competing risky

suppliers who may default during their production lead-times. The suppliers, who compete for

business with the retailer by establishing wholesale prices, are leaders in a Stackelberg game with

the retailer. The retailer, facing uncertain future demand, chooses order quantities while weighing

the benefits of procuring from the cheapest supplier against the advantages of reducing credit

risk through diversification. If the wholesale prices were exogenous, the retailer would benefit by

choosing suppliers that had low default correlations. However, when prices are endogenous, low

supplier default correlations dampens competition among the suppliers, increasing the equilibrium

wholesale prices. We show that the retailer prefers suppliers with highly correlated default events.

In contrast, the suppliers and the channel prefer defaults that are negatively correlated.



1 Introduction

Credit rating firms report that in 2002 over 240 firms defaulted on 160 billion dollars of debt, the

largest amount ever over any one year period. The default rate for high yield bonds in 2002 was also

at a record level of near 10%, and recovery rates were hovering at record low levels of just over 20%

of par. The combined volume of defaults in 2001 and 2002 exceeded the total volume of defaults in

the US over the previous twenty years. What is especially striking about the current trends is the

surge in the defaults of large, well-established companies. Since 2000 almost 50 firms with assets

or liabilities exceeding one billion dollars have filed for bankruptcy.1 The consequences of these

defaults are widespread and the ripple effects extend beyond the direct claimants, to suppliers and

customers as well as competitors throughout their respective supply chains.

Recognition of credit risk among counterparties in a supply chain is now more important than

ever before. As banks have tightened their credit policies, firms have found it more difficult to raise

funds, and this has created a need for retailers and suppliers to work closely together to better

bundle products with loans. As a result, it is not surprising that this form of trade credit is now

by far the largest source of short-term debt financing for firms, representing over one-third of the

current liabilities of all non-financial corporations. As a result of deteriorating credits, retailers are

now more inclined to split orders among several suppliers and to diversify their customer base. In

addition, retailers may enter into third party insurance contracts that provide financial protection

against customer default.2 While trade-credit insurance contracts linked to customer defaults are

frequently used for risk management, contracts that insure against supplier defaults are not as

common. This might be due to the fact that the losses of the retailer in case of supplier’s default

depend on various other uncertain parameters (e.g. customer demand, availability of alternative

supply sources, etc) and are not easily verifiable by financial institutions and, thus, cannot be

included in a contract. Therefore, companies can resort only to non-financial hedging to manage

supplier credit risk, which, as anecdotal evidence indicates, is a source of concern for managers.

Barton, Newell and Wilson (2003) share the following experience with supplier defaults: “ In 1997,

one South Korean automaker saw many of its parts suppliers go under. Without backup suppliers,

it couldn’t increase production for export when the won was devalued. While foreign distributors
1Examples of such firms include Adelphia, Century, Conseco, Global Crossing, Kmart, Nextel International,

Williams Communications, and WorldCom.
2Indeed, a mushrooming market for credit default swaps and other credit derivatives has emerged where the

financial ramifications of defaults can be mitigated. The estimated notional value of credit derivatives contracts at

year-end 2000 stood at $1000 billion, and is expected to grow very rapidly over this decade.
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begged for more cars to sell, production lines were idle back at home for lack of critical parts. The

company weathered the storm but never fully recovered its market position and was eventually

acquired by another domestic automaker”.

The supplier default need not be as catastrophic as WorldCom’s default to have a significant

impact on the firm’s bottom line. With the wide accentance of JIT manufacturing any disruption

in supply could have serious ramifications for the firm. In addition to the direct costs of supplier

bankruptcy, a firm could also suffer from indirect costs. For example, a supplier, in bankruptcy or

experiencing financial distress, could struggle to retain qualified workers. The managers of such a

firm have incentives to cut costs by eliminating “non-essential” activities, such as quality control,

R&D investments, etc. Consequently, the deteriorating quality of its goods may ultimately lead to

higher warranty costs for the retailer.

This paper explores the effects of credit risk in a supply chain consisting of a retailer and two

competing risky suppliers. If the wholesale prices provided by the suppliers are taken as exogenous,

then the retailer is faced with a classical portfolio problem, where credit risk can be diversified by

splitting orders. The benefits of diversification increase as default correlation decreases.

In our case, however, the wholesale prices charged by the suppliers are endogenous and the

benefits from diversification for the retailer depend on the actions of suppliers. Therefore, the

analogy with a classical portfolio selection problem is no longer valid and the analysis of the model

requires game theory rather than “simple” optimization. When suppliers compete for business

from the retailer, intuition suggests that the degree of price competition might depend on the

correlation of their defaults. For example, consider two suppliers identical in all aspects accept

default correlation. If the suppliers default processes were perfectly positively correlated, then,

from the retailers perspective, the two suppliers are identical. In this case, one might expect fierce

price competition between suppliers. Conversely, if the supplier default processes were perfectly

negatively correlated, then, for all practical purposes, the two suppliers do not coexist in the same

probabilistic states of nature, and therefore they have little need to compete as intensely over prices,

for business from the retailer.

The effect of correlated supplier defaults on competition between suppliers and on the retailer’s

profit is not clear a priori. On the one hand, if competition does intensify as the correlation between

supplier defaults increases, then trade offs exist between diversification benefits, afforded by low

correlation, versus increased competition effects leading to lower wholesale prices, afforded by high

correlation. On the other hand, if competition subsides as the correlation between supplier defaults
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increases, then the retailer unquestionably will benefit from low correlation.

This paper contributes to the literature by carefully exploring these tradeoffs, and identifying

the equilibrium strategies and pricing policies that result in equilibrium. By pressing beyond the

standard portfolio selection problem (with a single decision maker), where the role of correlation

has been well studied, and tackling the endogenous nature of pricing policies (with multiple decision

makers) and, consequently, competition, we hope to learn more about the true costs and benefits

of retailers who may be inadvertently reducing competition by diversifying orders among several

suppliers.

Our analysis shows how default risk affects all agents in a supply chain. We find that increasing

default intensities hurts all firms, possibly in different ways. Specifically, as default intensities

increase, the rate of decline in profits for firms in different echelons of the supply chain depend on

the shape of the customer-demand distribution function.

We provide an equilibrium where the retailer will choose suppliers that have highly positively

correlated default processes, because the resulting competition effects leads to low wholesale prices.

Therefore, in our setting, we conclude that the competition effects, resulting from high default

correlations, overwhelm any benefits the retailer derives from diversificaton. The consequences of

the retailer’s decision, however, result in reduced profits for the suppliers and for the entire supply

chain channel.

In addition to determining both direct and indirect effects of default correlation on performance

of firms in a supply chain, this paper also examines the consequences of the suppliers offering

different payment policies, ranging from up-front payments to on-delivery payments. In the presence

of default risk the timing of the payments is an important consideration. Orders can no longer be

viewed as binding forward contracts, but rather as risky contractual arrangements. The retailer

may be reluctant to pay up-front because if a supplier defaults the goods will not be delivered

and retailer’s payment will be lost. At the same time, the suppliers may be hesitant to prepare

goods for shipment without some kind of collateral or good faith money that signals the retailer’s

true commitment. Consequently, the pricing policies adopted might involve some combination of

up-front and on-delivery payments. Often, the supplier may create incentives, in the form of large

per unit discounts, to entice the retailer to pay up-front, rather than on-delivery. Since the timing

of payments demanded by the suppliers can induce different responses from the retailer, the nature

of pricing policies looms larger when credit risk is present. Our paper shows that as long as pricing

policies of the suppliers are restricted to a general linear pricing family, which includes up-front
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and on-delivery payments as special cases, then, in equilibrium, the retailer and suppliers will be

indifferent to the timing of payments.

The paper proceeds as follows. In section 2 we review the random yield and the financial

default literature. To some extent our model relates to the random yield model in the sense that

the amount of goods actually received may not equal the order quantities placed. However, our

analysis differs from the standard random yield literature in two very fundamental ways. First,

most of the random yield papers assume a single decision maker and hence ignore competition

effects between suppliers. Second, this literature has not been fully applied to the case at hand,

where the random yield relates to defaults of firms. In particular, in most random yield models, the

reliabilities of the systems that lead to random yields are assumed to be known and no procedure for

computing the default distribution is offered. While we could follow this path, for the case where

suppliers are large publicly traded firms with outstanding debt, the default processes, relevant

for our purposes, could be teased out from credit spread data using financial models of defaults

discussed in section 2. In section 3 we introduce our basic model, describe the default processes

and the nature of competition. Section 4 investigates the effects of timing of the retailer-to-supplier

payments and shows that for a class of linear pricing policies, in equilibrium, the suppliers and the

retailer are indifferent over the timing of the payments. This result is extremely helpful for the

subsequent analysis, because we no longer need to concern ourselves with details of pricing policies

In section 5, we examine the model with only one supplier and identify conditions on the demand

distribution function that ensure the existence and the uniqueness of the equilibrium. We describe

the equilibrium solution and investigate behavior of the supplier’s, the retailer’s, and the channel

profits Section 6 extends the analysis to the two-supplier model. We derive analytical solutions

for the equilibrium in three important cases. Although, for the general case of stochastic demand

with arbitrary correlation we cannot obtain analytical solutions, we can prove the existence of an

equilibrium and are able to compute the solution numerically. The results reveal the crucial role of

default correlation in the supply chain, and the tradeoffs between diversification and competition

effects. The insights derived from the model and their implications on the strategic behavior of the

firms are carefully examined.
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2 Literature Review

Our problem relates to the random yield research, the majority of which is dedicated to finding

optimal inventory and procurement decisions for a single firm whose supply in not certain. Yano

and Lee (1995) offer an excellent review of this literature and propose the following taxonomy of

the random yield research for lot sizing problems: general papers; single-stage, continuous time

models with constant demand; single-stage continuous time models with random demand; single-

period discrete time models; multiperiod discrete time models; facilities in series; assembly system;

multiple products and multiple periods; models with rework; multiple suppliers of the same item.

Our research can be linked to several of the above categories. The retailer’s problem in our

model with one supplier is a “single period discrete time” random yield model with a stochastically

proportional yield. Therefore, the retailer’s ordering policies that we derive are similar to the

policies obtained by Gerchak, Parlar and Vickson (1986). The retailer’s problem in our model

with two suppliers is similar to a single-period model by Anupindi and Akella (1993) and falls

into the “multiple suppliers of the same item” category of Yano and Lee (1995). Anupindi and

Akella (1993) study one- and multi- period discrete-time problems of a retailer who can order from

one or two unreliable suppliers. The authors consider various stochastic yield assumptions (all

or nothing yield, partial recovery, delayed delivery) and derive optimal ordering policies. Unlike

traditional random yield research, our analysis tackles not just the retailer’s problem but also

the suppliers’ problems in the context of the Stackelberg game between the suppliers and the

retailer. In addition, we employ risk-neutral valuation and specify financial defaults as the source

of supply uncertainty. Consequently, we can use credit risk data from financial markets to determine

probability distribution of random yield. Finally, unlike Anupindi and Akella (1993), who assume

defaults are uncorrelated events, we allow defaults to be correlated.

The problem of a single supplier selling to a newsvendor has been addressed by Lariviere and

Porteus (2001). The authors consider a one-period Stackelberg game with a single supplier, who

announces wholesale price, and a single retailer, who responds by choosing an order quantity. Under

mild assumptions on the demand distribution, they prove the existence and the uniqueness of the

solution to this game and provide conditions that the equilibrium order quantity must satisfy. The

authors also study how market size and demand variability affect the equilibrium solution, the firms’

profits, and the overall supply-chain performance. In our paper we add a possibility of supplier’s

default to the problem in Lariviere and Porteus (2001) and focus on the effects of the credit risk

on supply-chain performance. We further generalize the problem in Lariviere and Porteus (2001)
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by considering a game with more than one supplier.

In the analysis that follows there are two fundamental sources of uncertainty. The first relates

to the demand distribution for the good sold by the retailer. The second relates to the joint default

process for the two suppliers and the recovery rates for the orders, should default occur. If we

assume all agents are risk neutral, then the true demand distribution has to be given exogenously

and the true joint default process has to be estimated, typically from historical default data. Usually

such data is limited and one has to use average values obtained from firms in similar industries.

Rating agencies, for example, provide default correlations by industry. Examples of such studies

include Carty (1997) and Erturk (2000).

Rather than estimate actual default probabilities, it may be more appropriate, and perhaps sim-

pler, to estimate risk-neutralized probabilities. Indeed, pricing models for defaultable claims, as de-

veloped by Merton (1974), Jarrow and Turnbull (1995), Duffie and Singleton (1999a), Lando (1998)

and others, all require risk-neutralized processes rather than the true data-generating processes. If

the suppliers are large firms that have traded equity, debt and perhaps other claims on the assets

of their respective firms, then these prices contain information on the parameters of the default

processes. For example, if the price of a supplier’s debt falls, then this is a signal that default is

more likely. The idea, then, is to use traded prices to infer parameter estimates for processes that

control the well being of the firm.

The first family of models for defaultable claims, dating back to Merton (1974), are based on

the structural notion that default occurs at the moment when the firm’s assets drops below its

liabilities. Extensions of these models to handle multiple defaults, primarily through modeling

correlation among the equity values, has been considered by Hull and White (2001) and Zhou

(1997).

An alternative reduced form approach treats defaults as a jump process with an exogenous

intensity process. Models in this family include Jarrow and Turnbull (1995), Duffie and Singleton

(1999a) and many others. Such models are now routinely used to price credit derivatives on single

firms. These models can be extended to incorporate default correlation in several ways. The first

approach is to allow the default intensities to follow stochastic correlated processes. However,

such approaches produce default correlations that are too small. Jarrow and Yu (2001) develop

infection models, where the intensity of surviving firms are heavily influenced by recent defaults.

Duffie and Singleton (1999b) present an alternative approach where point processes are used to

trigger simultaneous defaults. More recently, Schönbucher and Schubert (2001) permit individual

6



firms to have arbitrary marginals, and then they build in a dependency structure via a copula

function.

In our models we assume the parameter values for default likelihoods over the given time horizon,

as well as default correlations, are given. Typically, these values would have to be extracted using

a reduced form model, or could be exogenously specified. The correlation effect is particularly

profound when the probability of a default over the fixed time horizon is small. To see this, let ρ

be the default correlation over a finite horizon. Then:

ρ =
π12 − π1π2√

π1(1 − π1)
√

π2(1 − π2)

where πi is the probability that supplier i defaults in the given time period, and π12 is the probability

that both suppliers default. Then, for π1 = π2 = π, and π small, we have:

π12 = ρπ + (1 − ρ)π2 ≈ ρπ.

Further, given supplier 1 has defaulted, the probability that supplier 2 defaults is given by

π2|1 =
π12

π1
≈ ρ.

These results show that when events are rare, default probability dependence is largely determined

by the correlation coefficient.

One could also interpret the problem considered in this paper as a multi-supplier sourcing prob-

lem. Recent survey articles by Elmaghraby (2000) and Minner (2003) describe a variety of models

proposed in a multi-supplier supply chain management literature. In the description of future re-

search, Minner (2003) suggests that models with competing suppliers and invetory considerations

due to the demand or lead time uncertainty have not been explored sufficiently yet. Our paper

attempts to rectify this shortfall.

3 Model Assumptions

Consider a model of a simple supply chain with one retailer and two suppliers, who produce perfectly

substitutable products using technologies with identical production lead-times. Without loss of

generality, assume that the lead time is 1 and that production begins at date 0 and ends at date 1.

At date 0, the suppliers determine their pricing policies. The retailer responds by choosing order

quantities. Thus, the suppliers compete with each other for the retailer’s business, and collectively,
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they are Stackelberg leaders in a game with the retailer. As soon as the suppliers receive orders,

they commence production. The per unit production cost for supplier i is ci and the bulk of

production costs is incurred up-front (at date 0).

At date 0 the retailer is faced with ordering decisions to satisfy uncertain demand, D, that

is realized at date 1. The cumulative distribution function for demand, G(·), is continuous with

probability density function g(·). If a supplier defaults during the production cycle, the exact

quantity delivered will depend on the timing of the default and on the nature of the creditors

that have claims on the assets of the defaulted firm. In general, let βi represent the proportional

random recovery rate for the supplier i, with 0 ≤ βi ≤ 1. We assume that the default process for

supplier i is a random stopping time which is unaffected by the pricing and payment policies and,

in particular, by the order quantities. This assumption is justified if the default risk is attributed

to exogenous events, or if the business that the retailer brings to the supplier is a small part of the

supplier’s full line of business activities. There is no asymmetric information and the joint default

distribution is known by all agents.

The default and demand random variables are independent and the per unit retail sales price,

s, is predetermined. One can think of s as the expected value of the future random price, S(T ),

where S(T ) is independent from other random variables in the model. We assume, for simplicity,

that any unsatisfied demand is lost and any unsold goods are costlessly discarded. Holding and

shortage costs could be easily added to our model, however, because they do not alter the nature

of our findings we omit them for the ease of exposition.

In addition, one could extend this model by introducing default processes for the retailer and

customers. With appropriate assumptions (e.g. customer defauts are independent of firms defaults,

demand and default random variables are independent) analysis of the general model leads to the

same insights on the role of correlated supplier credit risk as the analysis of the simple model does.

Although the retailer and customer credit risks are important, they have been studied already.

Also, as mentioned in the introduction, besides operational measures, firms have access to trade-

credit insurance to manage those risks. Therefore, because the focus of this paper is the supplier

credit risk, we chose the simplest model that facilitates the analysis.

We assume that there is no arbitrage and markets are complete. Therefore, standard finance

arguments guarantee the existence and the uniqueness of a pricing measure, also called risk-neutral

measure [see, for example, Harrison and Kreps (1979), Harrison and Pliska (1981)] under which

asset prices, normalized by the money fund, are martingales. The money fund grows at the riskless
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rate r. Each firm in a supply chain maximizes its expected discounted profit, where expectation is

taken with respect to the risk-neutral pricing measure3.

4 The Timing of Payments for the Retailer’s Orders

In the presence of credit risk, the timing of retailer-to-supplier payments is important. To reduce

credit risk exposure, the retailer would prefer to pay at date 1 after the product has been delivered,

whereas the suppliers would prefer to receive payments at date 0, before production has begun. This

section establishes that, if pricing policies are restricted to F = {policies for which the discounted

expected retailer’s cost is linear in order quantity}, then, in equilibrium, both the retailer and the

supplier are indifferent to the timing of payments. Consider the following examples:

Example 1.

Supplier i announces her policy φi = {αi, w
F
i , wD

i } where wF
i is the per unit up-front wholesale

price, wD
i is the per unit on-delivery price, and 0 ≤ αi ≤ 1 is the proportion of the units for

which the retailer must pay up-front. If the retailer orders zi units from suppler i, then the retailer

makes an immediate up-front payment of αiziw
F
i . Payment for the remaining units will be made on

delivery at a price wD
i . The amount of goods delivered to the retailer at time 1 is random variable

βizi and the additional payment due on receipt is (βi − αi)+ziw
D
i . Denote the family of policies

generated by this rule by F0.

For any policy φi = (αi, w
F
i , wD

i ) ∈ F0, the expected discounted cost to the retailer is

Ki(φi)zi =
{
e−rE[(βi − αi)+]wD

i + αiw
F
i

}
zi, (1)

This is a linear policy since the expected cost is linear in the number of units ordered, that is

F0 ⊂ F . When αi = 0 we obtain an on-delivery payment policy, and when αi = 1 we obtain an

up-front payment policy.

There exist linear policies that are not in F0. For example, a policy that calls for the up-front

payment of a certain percent of the total expected cost with the actual balance due on-delivery. �

Let P (z1, z2) be the retailer’s discounted expected revenue obtained from selling the product

after orders of size z1 and z2 are placed with the suppliers.

P (z1, z2) = e−rsE[min(D, z1β1 + z2β2)], (2)
3If one assumed, alternatively, that firms are risk-neutral and used the data-generating measure, the analysis in

this paper would not change.
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The retailer’s discounted expected profit, R(z1, z2), given the suppliers’ linear pricing policies φi ∈

F , i = 1, 2 is:

R(z1, z2) = P (z1, z2) − K1(φ1)z1 − K2(φ2)z2. (3)

Note that the retailer’s discounted expected profit depends on suppliers’ policies φi, i = 1, 2 only

through Ki = Ki(φi), i = 1, 2. Therefore, the retailer responds with the same order quantity to

an equivalence class of policies CK ≡ {φ ∈ F : Ki(φ) = K} from supplier i. For example, if there

are two distinct pricing policies φ′ and φ′′, one stipulating that a supplier be paid up-front and

the other policy requiring a payment to a supplier to be made on-delivery, with the property that

K(φ′) = K(φ′′) = K, then the retailer is indifferent between these policies, and, therefore, between

the timing of payments.

Example 2.

As can be seen from equation (1), the retailer makes the same profit and orders the same amount

from supplier i regardless of whether the payment is made up-front (α = 1) or on-delivery (α = 0)

provided that wF
i and wD

i satisfy the following equation:

e−rE[βi]wD
i = wF

i . (4)

Because suppliers can choose arbitrary values for wF
i and wD

i , equation (4) need not hold. Therefore,

in general, the retailer may favor either the up-front or the on-delivery payment policy. �

Let Si(φi, φ−i) denote the discounted expected profit of the supplier i given that the other

supplier selects pricing policy φ−i ∈ F . The suppliers are engaged in a Bertrand competition with

each other, trying to maximize

Si(φi, φ−i) = [Ki(φi) − ci] zi[K1(φ1),K2(φ2)], (5)

where zi[K1(φ1),K2(φ2)] is the optimal order quantity placed by the retailer to supplier i, given

pricing policies φi, i = 1, 2. Observe that the supplier i’s problem is also a function of [K1 =

K1(φ1),K2 = K2(φ2)] only. Therefore, we can rewrite the suppliers’ profit functions:

Si(Ki,K−i) = (Ki − ci) zi(K1,K2). (6)

Proposition 1. Given values (K1,K2), the suppliers’ profits, the retailer’s order quantity, and

the retailer’s profit are the same for any φ1 ∈ CK1 and φ2 ∈ CK2.

An immediate consequence of this proposition is
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Corollary 1. If there exists an equilibrium solution (φ∗
1, φ

∗
2) of the suppliers’ game where K1(φ∗

1) =

K∗
1 and K2(φ∗

2) = K∗
2 then for all φ1 ∈ CK∗

1
and for all φ2 ∈ CK∗

2
, φ1, φ2 is also an equilibrium

solution. Further, the suppliers’ profit, the retailer’s order quantity, the retailer’s profit and the

system profit are the same.

In particular, in equilibrium, the retailer, the suppliers, and the supply chain are indifferent between

up-front and on-delivery payments.

Example 3.

For pricing policies in F0, the above results indicate that once the optimal K∗
i values are obtained,

both suppliers are indifferent among the set of pricing policies {wF
i , wD

i , αi}, i = 1, 2, that satisfy:

e−rE[(βi − αi)+]wD
i + αiw

F
i = K∗

i .

In particular, in equilibrium, the system is indifferent between payment up-front and payment

on-delivery and the wholesale prices satisfy

e−rE[βi]wD
i = wF

i = K∗
i .

That is, if the supplier i offers a on-delivery–payment price of wD
i , then the equivalent price for an

up-front payment, wF
i , is lower by a factor that reflects the survival probability and the time value

of money. �

Proposition 1 can be extended to more than two competing suppliers. However, if the payment

policies, φ 6∈ F , then simple sufficient statistics may no longer be found and the structure of

payment policies will affect the analysis in complex ways. For this general case, the retailers profit

is given by

R(z1, z2) = P (z1, z2) − K1(φ1, z1) − K2(φ2, z2).

This paper will consider only linear pricing policies, F . Therefore, we can ignore the differences

between particular policies and focus on suppliers’ problem of identifying optimal K values. This

result reduces the complexity of the problem tremendously and we will take take advantage of this

simplification in the following sections of the paper. Note that K can be thought of as an up-front

wholesale price. We will refer to K as wholesale price from now on.

5 Ramifications of Credit Risk in the One Supplier Case

To focus on the effects of credit risk on supply chains, consider a model with one supplier first.
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5.1 The Retailer’s Problem

With one risky supplier, the retailer’s discounted expected revenue, given by equation (2), reduces

to

P (z) = e−rsE[min(D, zβ)].

The retailer’s expected profit, R(z), given a supplier’s wholesale price K, is

R(z) = P (z) − Kz.

Note that R(z) is concave in z, with

R′(z) = P ′(z) − K = e−rsE[βG(zβ)] − K,

where G(x) = 1 − G(x). The optimal order quantity z satisfies the following first order condition

P ′(z) ≡ e−rsE[βG(zβ)] = K. (7)

When K = c, the retailer’s problem coincides with the problem of a central planner.

Consider two random recovery rates β1 and β2. By definition4, β2 is stochastically smaller than

β1 (notation: β2 <st β1) iff Pr(β1 > a) ≥ Pr(β2 > a) for all a. We will equate the increasing

credit risk with the recovery rate becoming stochastically smaller, which will be denoted by β ↓st.

Because min(D, zβ) is an increasing function of β for every D and z, it follows that the profit of

the centralized system

C(z) ≡ e−rsE[min(D, zβ)] − cz

is decreasing as β ↓st. Hence,

Proposition 2. The optimal profit of the centralized system, C∗ = C(z∗), decreases as credit

risk increases.

For the centralized system we are interested in identifying conditions under which we can char-

acterize the dependence of the optimal order quantity and service level on the credit risk. To-

wards this goal define A(z, β) = βG(zβ). Then, differentiating with respect to β, we obtain

Aβ(z, β) = G(zβ)[1 − h(zβ)], where h(z) = z g(z)

G(z)
is the generalized failure rate, as defined by

Lariviere and Porteus (2001). We would like to identify z’s for which A(z, ·) is increasing. Assume

that h(·) is increasing [Increasing Generalized Failure Rate (IGFR) property]. Many common dis-

tributions have the IGFR property. For example, any IFR (Increasing Failure Rate) distribution
4For discussion on stochastic order relations, see Shaked and Shanthikumar (1994)
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is also IGFR. Define z = sup{z : h(z) ≤ 1}. Note that A(z, ·) is increasing. Therefore, as β ↓st,

E[A(z, β)] decreases. Because E[A(z, 0)] = 0 and c
e−rs

> 0, there exists a random variable βmax for

which e−rsE[A(z, βmax)] < c and a solution to equation (7), z∗ ≤ z, for β <st βmax. The following

proposition describes the effect of credit risk on the optimal order quantity and the service level of

the centralized system.

Proposition 3. Suppose that G(·) is IGFR and for some random variable βmax, e−rsE[A(z, βmax)] <

c. Then for all β <st βmax as credit risk increases (as β ↓st)

(i) The optimal order quantity, zcentral, decreases.

(ii) The service level, Pr(D < zcentralβ), decreases.

Proof. See Appendix. �

A stronger assumption on the distribution of the recovery rate β can make the IGFR require-

ment unnecessary. For example, if the recovery rate, β, follows a Bernoulli distribution with the

probability of default π:

β =





0 with probability π

1 with probability 1 − π,

then the optimal order quantity for the centralized system is

zcental = G−1

(
1 − c

e−r(1 − π)s

)
, (8)

and the results of Proposition 3 hold without the IGFR assumption.

5.2 The Supplier’s Problem

According to equation (6), the discounted expected profit of the supplier, given that she induces

the retailer to order z is given by

S(K) = (K − c)z(K).

Because there is a one-to-one correspondence between the wholesale price K and the order quantity

z, defined by equation (7), we can rewrite the supplier’s discounted expected profit as a function

of z:

S(z) = [P ′(z) − c]z. (9)
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Proposition 4. There exists a solution to the supplier’s problem (9). The optimal order quantity

satisfies the following equation:

E
{
βG(βz∗)[1 − h(βz∗)]

}
=

c

se−r
. (10)

Proof. See Appendix. �

In general, equation (10) may have several solutions. To ensure that the supplier’s problem is

unimodal additional assumptions are needed. Assume that the recovery rate has a Bernoulli dis-

tribution with default probability π. Then the supplier’s problem is to maximize

S(z) =
[
e−r(1 − π)sG(z) − c

]
z. (11)

This problem is equivalent to the problem studied in Lariviere and Porteus (2001) with unit sales

revenues given by s(1 − π)e−r and the next proposition follows directly from their Theorem 1.

Proposition 5. Suppose that the demand distribution has finite mean, support on [a, b), and

function G(·) has an increasing generalized failure rate (IGFR). Then:

(i) The first order condition for supplier’s problem is:

G(z) [1 − h(z)] =
c

s(1 − π)e−r
. (12)

(ii) The supplier’s profit function is unimodal on [0,+∞), linear and strictly increasing on

[0, a), strictly concave on [a, z), strictly decreasing on (z,+∞). Any solution z∗ to equation

(12) is unique and must lie in the interval [a, z]. The supplier’s optimal order quantity is

either z∗ or a.

Thus, the IGFR property of the demand distribution guarantees the uniqueness of the solution to

the supplier’s problem.

Next, consider the effects of credit risk. From equations (7) and (12), the equilibrium wholesale

price is

K∗ = e−r(1 − π)sG(z∗). (13)

Conversely, if the supplier charges wholesale price K∗ ≥ c, the retailer orders

z∗ = G−1

(
1 − K∗

e−r(1 − π)s

)
. (14)

Comparing (14) with (8), because K∗ ≥ c, it follows that z∗ ≤ zcentral, which is the familiar

effect of double marginalization. It is also possible to show that total system profit is lower in the

decentralized system.
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Similarly to the centralized system, the performance of the decentralized system deteriorates as

the default probability increases

Theorem 1. For the Stackelberg game between the supplier and the retailer, the equilibrium

order quantity, z∗, the optimal supplier’s profit, S∗, and the optimal retailer’s profit, R∗, are all

decreasing in the default probability, π.

Proof. See Appendix. �

5.3 Performance Measures

Theorem 1 indicates that as the default probability decreases the profits for both the supplier and

the retailer rise. However, Theorem 1 does not specify which of the two firms is made relatively bet-

ter off with an improvement in the credit quality. Let η(π) ≡ S∗

R∗ represent the ratio of equilibrium

profits, for a given default probability, π. If η(·) is decreasing in π, then the supplier is relatively

worse off if default risk increases. If η(·) is increasing then in π, then the retailer is relatively worse

off if default risk increases. Unfortunately, it is difficult to characterize function η(·) analytically.

However, using expressions (12) and (13), we can derive a lower bound for η as follows:

η(π) =
S∗

R∗ =
(K∗ − c)z∗

e−r(1 − π)sE min(D, z∗) − K∗z∗
≥ K∗ − c

e−r(1 − π)s − K∗ = z∗
g(z∗)
G(z∗)

= γ[z∗(π)],

where γ(z) = z g(z)
G(z) . The lower bound γ(π) represents the ratio of supplier’s and retailer’s profit

per each sold unit. While it is not the same as the ratio of profits S∗

R∗ , it serves as an approximation,

which would be fairly precise if the probability that the retailer sells the entire order z∗ is high.

This probability is related to the service level of the system, defined as Pr(D < z∗β). This is

another important measure of the supply chain performance and is equal to

Pr(D < z∗β) = (1 − π)G(z∗) =
e−r(1 − π)s − K∗

e−rs
. (15)

The following proposition characterizes the behavior of the lower bound , γ, and the behavior of

the ratio of the service levels of the supply chain relative to a centrally coordinated system.

Proposition 6. Suppose that the lowest possible default probability is π0 ≥ 0, so that for all π,

π ≥ π0. Let z∗0 be the optimal order quantity corresponding to π0.

Then, if cumulative distribution function of demand is concave (convex) on the interval [0, z∗0 ],

then for all π:
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(i) The ratio of the service level of the decentralized system, e−r(1−π)s−K∗

e−rs
, over the service

level of the centralized system, e−r(1−π)s−c
e−rs , is decreasing (increasing) in π.

(ii) The ratio of supplier’s and retailer’s profits per unit of sold product, K∗−c
e−r(1−π)s−K∗ , is

increasing (decreasing) in π.

Proof. See Appendix. �

The ratio of service levels is equal to the conditional probability of meeting customer’s demand

in the decentralized system, given that the demand is met in the centralized system. According

to Proposition 6, when the cumulative demand distribution function is concave, we overestimate

this conditional probability if we ignore the credit risk in the system. Thus, we underestimate

the severity of the drop in the service level. On the other hand, when the cumulative demand

distribution function is convex, by ignoring credit risk, we are being too pessimistic about the

service levels in the decentralized system.

According to part (ii) of Proposition 6, and assuming the actual ratio of equilibrium profits

behaves similarly to the lower bound, if the demand distribution function is concave then the

optimal retailer’s profit decreases at a faster rate than the optimal supplier’s profit. Conversely,

if the demand distribution function is convex then the supplier’s profit decreases faster than the

retailer’s profit as credit risk increases.

Numerical results suggest that the actual ratio of optimal supplier’s and retailer’s profits, η(π),

behaves similarly to the lower bound, γ(z∗), as illustrated by the following example.

Example 4.

Suppose that s = 100, c = 30 and r = 0.1. First, consider the case when demand is exponential with

mean 150 units. According to Proposition 2 and Theorem 1, as credit risk increases, the optimal

supplier’s profit, the optimal retailer’s profit and the coordinated channel profit are decreasing.

These properties are illustrated in Figure 1.

Since the demand distribution function is concave, as predicted by Proposition 6, the ratio S∗

R∗

and γ(z∗) should increase in π. Panel B of Figure 1 shows that this is indeed the case. Panel C of

Figure 1 compares the profit of the decentralized system (S∗ + R∗) to the profit of the centralized

system (C∗). The figure shows that the ratio S∗+R∗

C∗ is slightly increasing in π.

Figure 1 also shows the results for the case where the cost and interest rate parameters are the

same but the demand distribution is normal with mean 150 units and standard deviation 60. For
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small values of z (corresponding to large values of π) the cumulative demand distribution function

is convex. Therefore, according to Proposition 6 and as shown in Figure 1, γ(z∗) is decreasing for

large π, and S∗

R∗ has a similar behavior.

In addition, Panel C shows that the ratio of the decentralized system profit over the centralized

system profit S∗+R∗

C∗ is decreasing for large π. �

6 The Effect of Correlation

As was shown in section 5, credit risk reduces firms’ profits as well as channel profit. To reduce

default risk exposure, the retailer might consider placing orders with both two suppliers. Ceteris

paribus, if the wholesale prices are exogenously fixed, because of the diversification, the retailer

benefits from the decreasing correlation between suppliers’ defaults. This section shows how the

correlation affects retailer’s and suppliers’ profits if wholesale prices are determined endogenously.

In this section we assume that recovery rates βi for each supplier follow Bernoulli distributions

with probabilities of default πi, i = 1, 2. Furthermore, let p11 be the probability that both suppliers

will default; p01 be the probability that the supplier 1 will survive and the supplier 2 will default,

etc. The joint default distribution and the marginal probabilities, πk, satisfy the following:

p00, p01, p10, p11 ≥ 0; p00 + p01 + p10 + p11 = 1;

p00 + p01 = 1 − π1; p00 + p10 = 1 − π2; p11 + p01 = π2; p11 + p10 = π1.

We model the correlation between suppliers’ defaults through values of pij. For example, if the

defaults are perfectly positively correlated, then p01 = p10 = 0 and p00 = 1 − π1 = 1 − π2 (hence

π1 = π2). As the correlation decreases, p01 and p10 increase and p00 decreases. When defaults are

perfectly negatively correlated, p11 = p00 = 0 and p01 = 1 − π1, p10 = 1 − π2.

6.1 Deterministic Demand

As we have seen in the one-supplier model, the supplier’s problem could be difficult to solve. For

the two-supplier model the difficulty is compounded by the game between suppliers. To develop

intuition on the role of the correlation, we initially ignore one of the sources of uncertainty and

assume that demand is deterministic. The insights will still be valid for the more general case of

stochastic demand, where analytical solutions are not generally attainable.
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6.1.1 The Retailer’s Problem

Given information about the default distribution and the supplier’s wholesale prices Ki, i = 1, 2,

the retailer determines how much to order from each of the suppliers so as to maximize

R(z1, z2) = P (z1, z2) − K1z1 − K2z2, (16)
where

P (z1, z2) = e−rs [p01 min(D, z1) + p10 min(D, z2) + p00 min(D, z1 + z2)] . (17)

The solution to the retailer’s problem is described in the following proposition.

Proposition 7. Assume that e−rs(1 − πi) ≥ Ki, i = 1, 2. Then

(z∗1 , z∗2) =





(D,D) if K1 ≤ e−rsp01 and K2 ≤ e−rsp10

(0,D) if e−rsp01 < K1 < e−rs(1 − π1) and K2 < K1 + e−rs(π1 − π2)

(D, 0) if e−rsp10 < K2 < e−rs(1 − π2) and K2 > K1 + e−rs(π1 − π2)

z∗1 + z∗2 = D; z∗i ≥ 0 if K1 > e−rsp01, K2 > e−rsp10, and K2 = K1 + e−rs(π1 − π2)

Proof. See Appendix �

Figure 2 provides a graphical representation of the retailer’s response described in Proposition 7.

6.1.2 Equilibrium Solution of the Game between Suppliers

The suppliers compete by selecting wholesale prices Ki that maximize their discounted expected

profits as given in equation (6). Based on the retailer’s response function the solution to the game

between the suppliers is given in the following proposition.

Proposition 8. Assume that either e−rsp01 > c1 or e−rsp10 > c2. Then the equilibrium solution

to the game between suppliers is unique and

(i) If e−rsp01 > c1 and e−rsp10 > c2, then (K∗
1 ,K∗

2 ) = (e−rsp01, e
−rsp10). The retailer’s

order quantities are (D,D).

(ii) If e−rsp01 > c1 and e−rsp10 ≤ c2, then (K∗
1 ,K∗

2 ) = [c2 − ε − e−rs(π1 − π2), c2 − ε] for a

small ε. The retailer’s order quantities are (D, 0).

(iii) If e−rsp01 ≤ c1 and e−rsp10 > c2, then (K∗
1 ,K∗

2 ) = [c1 − ε, c1 − ε + e−rs(π1 − π2)] for a

small ε. The retailer’s order quantities are (0,D).

Figure 2 shows the unique equilibrium solution described in Proposition 8.
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6.1.3 Defaults Correlation and Supply Chain Profits

Part (i) of Proposition 8 is the most relevant to the study of the correlation effects, because in this

case both suppliers participate in the game. Using expressions for the equilibrium prices and order

quantities, under hypothesis of part (i) in Proposition 8, the equilibrium retailer’s and suppliers’

profits are

R∗ = e−rsD (p01 + p10 + p00) − e−rsp01D − e−rsp10D = e−rsp00D (18a)

S∗
1 =

(
e−rsp01 − c1

)
D (18b)

S∗
2 =

(
e−rsp10 − c2

)
D. (18c)

Therefore, the total supply chain profit is

U∗ =
(
e−rsp01 − c1

)
D +

(
e−rsp10 − c2

)
D + e−rsp00D = e−rs(1 − p11)D − c1D − c2D. (19)

The coordinated channel profit is

C∗ = e−rsD (p01 + p10 + p00) − c1D − c2D = e−rs(1 − p11)D − c1D − c2D. (20)

Using these explicit expressions for profits and noting that as the correlation between defaults

changes from the perfect negative to the perfect positive the default distribution parameters change

from (p01 = 1 − π1, p10 = 1 − π2 and p00 = p11 = 0) to (p00 = 1 − π, p01 = p10 = 0, p11 = π), we

immediately obtain the following result:

Theorem 2. Assume that e−rsp01 > c1 and e−rsp10 > c2. Then the channel profit is equal to

the coordinated channel profit (U∗ = C∗) and, therefore, equilibrium solution (K∗
1 ,K∗

2 ) are channel

coordinating. In addition, as the correlation between defaults increases:

(i) The supply chain profit, U∗ = C∗, decreases

(ii) The retailer’s profit, R∗, increases

(iii) The suppliers’ profits, S∗
1 and S∗

2 , decrease.

It follows from Theorem 2 that the retailer would prefer the suppliers’ defaults to be positively

correlated. The positive correlation between defaults induces high competition between suppliers,

which leads to lower wholesale prices, compensating the retailer for the loss of diversification ben-

efits. Conversely, suppliers prefer to have the defaults that are negatively correlated. When the

defaults are perfectly negatively correlated there is no competition between the suppliers (in the

probabilistic states of nature where one of the suppliers survived the other one defaulted), therefore,

each supplier behaves as a monopolist and extracts all of the system profits.
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If it were feasible, the suppliers would benefit by decreasing their default correlation. The

correlation between defaults can be reduced by using different production technologies, different

raw materials sources, by placing production facilities in different parts of the country (or different

countries). This might provide firms with incentives to expand their global operations.

Finally, note that the supply chain profit increases as the correlation of defaults decreases.

Therefore, what is good for the supplier is also good for the channel, but detrimental for the

retailer.

6.2 Stochastic Demand

6.2.1 The Retailer’s Problem

Given wholesale prices K1 and K2, the retailer maximizes her discounted expected profit,

R(z1, z2) = P (z1, z2) − K1z1 − K2z2, (21)

where

P (z1, z2) =e−rsE [min(D, z1β1 + z2β2)] =

=e−rs {p01E [min(D, z1)] + p10E [min(D, z2)] + p00E [min(D, z1 + z2)]} .
(22)

The following proposition summarizes the solution of the retailer’s problem with stochastic demand.

Proposition 9. The optimal order quantities, (z1, z2), for the problem in (21), (22) satisfy the

following systems of equations:

If





K2 ≥ p00

1−π1
K1 + e−rsp01,

K1 ≤ e−rs(1 − π1)
Then





e−rs(1 − π1)G(z1) = K1

z2 = 0.
(23)

If





K1 ≥ p00

1−π2
K2 + e−rsp10,

K2 ≤ e−rs(1 − π2)
Then





z1 = 0

e−rs(1 − π2)G(z2) = K2.

(24)

If





K1 < p00

1−π2
K2 + e−rsp10,

K2 < p00

1−π1
K1 + e−rsp01

Then





e−rs
[
p01G(z1) + p00G(z1 + z2)

]
= K1

e−rs
[
p10G(z2) + p00G(z1 + z2)

]
= K2.

(25)

Otherwise





z1 = 0

z2 = 0.
(26)

Proof. See Appendix �
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Figure 3 provides a graphical representation of the retailer’s response function described in Propo-

sition 9.

The following result will be needed to prove the existence of an equilibrium in the subsequent

analysis.

Corollary 2. For any supplier i, the optimal order quantity zi(Ki,K−i) is a continuous function

of Ki for a fixed wholesale price of the other supplier K−i.

Proof. See Appendix �

6.2.2 Equilibrium Solution of the Suppliers’ Game

The suppliers maximize their discounted expected profits given by equation (6). Observe that

Ki > e−r(1−πi)s, i = 1, 2 is a dominated strategy for each of the suppliers. Therefore, it is sufficient

to consider suppliers pricing policies restricted in the rectangle [0, e−r(1− π1)s]× [0, e−r(1− π2)s].

By Corollary 2, z(·, ·) is a continuous function. Therefore, from Glicksberg (1952) Theorem we

derive the following

Proposition 10. There exists a mixed-strategy equilibrium solution to the suppliers’ game.

It is difficult to show, however, that there exists a pure-strategy equilibrium for this game. The

game is not supermodular, therefore, the results in Topkis (1998) cannot be applied. It is also

difficult to produce parsimonious conditions that would ensure quasi-concavity of the suppliers’

profit functions, even though we can verify this property for particular distributions (normal, ex-

ponential). Therefore, we cannot invoke results from Debreu (1952). For simplicity, assume that

the problem is symmetric, that is c1 = c2 = c and π1 = π2 = π (consequently, p01 = p10). Then, if

there exists a symmetric pure-strategy equilibrium, it can be characterized in the next proposition.

Proposition 11. If there exists a symmetric pure-strategy equilibrium, then the equilibrium order

quantities, z∗1 = z∗2 = z∗, satisfy

p01G(z)[1 − h(z)] + p00G(2z)
[
1 − 1

2
h(2z)

]
+

p2
00g

2(2z)z
p10g(z) + p00g(2z)

=
c

e−rs
. (27)

The equilibrium wholesale prices are

K∗
1 = K∗

2 = e−rs
[
p01G(z∗) + p00G(2z∗)

]
. (28)

Proof. See Appendix �
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Based on Proposition 11 we suggest the following two-step procedure for computing a symmetric

pure-strategy equilibrium (if it exists):

1. Solve equation (27) to find an optimal order quantity z∗.

2. Compute the corresponding equilibrium wholesale price, K∗, using equation (28).

Note that the supplier’s profit function is piecewise defined

Si(Ki,K−i) =





Sall
i (Ki,K−i) if the retailer orders only from supplier i

Sshare
i (Ki,K−i) if the retailer orders from both suppliers

Snone
i (Ki,K−i) if the retailer does not order from supplier i

The two-step procedure above finds the equilibrium point using only the Sshare
i part of the supplier’s

profit function. Because Snone
i (Ki,K−i) ≡ 0, maxKi{Sshare

i (Ki,K−i)} ≥ maxKi{Snone
i (Ki,K−i)}.

The following lemma provides conditions under which the maximum of Sshare
i also dominates the

maximum of Sall
i . Let Kmon correspond to the equilibrium wholesale price of a one-supplier model.

A subindex, i, identifying supplier, is implied in the following statement.

Lemma 1.

Assume that the demand distribution function is IGFR. Then for all K̂ < Kmon

max
K

Sshare(K, K̂) ≥ max
K

Sall(K, K̂)

Proof. See Appendix �

Therefore, under the conditions of Lemma 1, the maximum of Sshare is also the global maximum

of the supplier’s profit function S.

6.2.3 Default Correlation and Supply Chain Profits

While it is difficult to characterize the equilibrium solution in general, special cases of perfect

positive and perfect negative correlation between defaults lend themselves to analysis rather easily.

To study the supply chain performance at intermediate values of the default correlation, we resort

to numerical analysis.

Example 5. (Arbitrary Correlation. Exponential Demand Distribution)

Suppose that the demand distribution is exponential with mean 150 units and that the values
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of the other parameters are s = 100, c1 = c2 = c = 10, r = 0.1, π1 = π2 = 1
2 . Note that a

value π = 1
2 is extremely high from a practical perspective, however, this is the only value that

allows us to consider the full range of correlations (from perfect negative to perfect positive) in a

symmetric game. Using the two-step procedure described in the previous subsection we establish

the symmetric equilibrium order quantity, z∗, and wholesale price, K∗, for different values of p00.

Figure 4 shows the results.

Figure 4 illustrates that as the correlation between suppliers’ defaults increases, the system

profit and suppliers’ profits decrease, while the retailer’s profit increases. �

Similar results are obtained for other demand distributions. Just as in the case of deterministic

demand, we observe that a positive correlation between the defaults induces more intense competi-

tion between the suppliers, benefiting the retailer. While the supply chain as a whole benefits from

the diversification, the retailer makes the least profits when the defaults are perfectly negatively

correlated. Because of this conflict of interests, the responsibilities of the central planner in a supply

chain cannot be delegated to the retailer.

7 Conclusion

The recent experience with high level of corporate defaults have reinforced the importance of credit

risk management, not only as a treasury function but also in the context of operational planning.

While related operational random yield and financial defaults literatures are quite extensive, we

believe that this paper is one of the first to address supply-chain management questions in the

model with competition between suppliers in the presence of financial credit risk. Specifically, using

a simple one-period model of a supply chain with one retailer and two risky suppliers, this paper

studies questions of supplier selection, pricing and ordering policies among firms. In our model,

the suppliers compete for business from the retailer, and are, collectively, Stackelberg leaders in a

game with the retailer.

Although, in general, the timing of the payments from the retailer to the suppliers is important,

we prove that a family of general linear pricing policies can be divided into equivalence classes

such that, in equilibrium, the suppliers, the retailer, and the channel are not concerned with the

timing of payments. A positive side-effect of this important result is a tremendous reduction in the

complexity of the subsequent analysis.
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A one-supplier model confirms that default risk has detrimental effect on firms in a supply chain.

We identify sufficient conditions for the existence and the uniqueness of the equilibrium in the game

between the supplier and the retailer and provide an equation that the equilibrium order quantity

must satisfy. Analysis of the one-supplier model shows that the supplier, the retailer, the channel,

and the coordinated channel profits are decreasing in the default probability. Furthermore, the

rate of profits decline for firms in different echelons of the supply chain depends on the concavity

or convexity of the demand’s cumulative distribution function.

With more than one supplier, the retailer may decide to hedge default risk by splitting orders.

If the wholesale prices were exogenously fixed, then, as one would expect, the negative correla-

tion between default events yields higher diversification benefits to the retailer. However, in our

competitive environment, the wholesale prices are determined endogenously by the suppliers. We

are able to find equilibrium solutions analytically when demand is deterministic or when demand

is stochastic and default correlation is either one or minus one. For the model with stochastic

demand and arbitrary correlation we compute the equilibrium solution numerically. The analysis

of the equilibrium solution shows that the positive correlation between default events stimulates

competition between suppliers leading to lower wholesale prices. The benefits to the retailer, due

to the lower wholesale prices, far outweigh the losses due to the weaker diversification. Therefore,

contrary to initial intuition about the advantages of the diversification, positive default correlation

benefits the retailer. We also show that a negative default correlation benefits the suppliers and the

channel as a whole. Thus, incentives of the retailer and the channel are misaligned. The retailer

should not be delegated to coordinate the channel. Further, the suppliers can benefit by making

their defaults processes as negatively correlated as possible. For example, they may attempt to sell

to different customers, use different production technologies, procure from different raw materials

sources, and reduce exposures to common country specific risks or common catastrophic events.

While our analysis is done for the two-supplier model, one could venture a guess, based on

an analogy between competition in our model and competition in the classical Bertrand model in

economics (in fact, when supplier defaults are perfectly positively correlated, our model reduces to

a version of the Bertrand competition) that the insights we gleaned from the two-supplier model

will also hold in a multi-supplier setting.

In our analysis we have made several simplifying assumptions. For example, we assumed that

the default and demand processes are independent, the default distribution of suppliers does not

depend on the order quantities, the production lead times for both suppliers are equal. However,
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even in a simple model, including credit risk considerations into operational planning significantly

affects ordering and pricing decisions in a supply chain and alters the nature of competition among

firms. It remains for future research to study the effects of weakening these assumptions.
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Figure 1: Comparisons of profits for normal and exponential demand distributions
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Figure 2: Retailer’s response function and equilibrium solution to the game between
suppliers when demand is deterministic.

Figure 3: Retailer’s response function to wholesale prices Ki, i = 1, 2 when demand is
stochastic.
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Figure 4: Symmetric Equilibrium Results for Exponential Demand
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Appendix

Proof of Proposition 3.

Recall that A(z, β) = βG(zβ) and Aβ(z, β) = G(βz) [1 − h(βz)]. Because demand distribution is

IGFR and β ≤ 1, h(zβ) ≤ h(z) < 1 for all z < z and for all β. Therefore, for all z ≤ z, Aβ(z, β) > 0

and, hence A(z, ·) in an increasing function. Thus, for all z ≤ z as β ↓st, E[A(z, β)] decreases. In

addition, observe that E[A(z, β)] is decreasing in z for any given random variable β. Therefore, by

the proposition hypothesis, the optimal order quantity corresponding to βmax: zcentral(βmax) < z.

It follows that for all β1 <st β2 <st βmax, z(β1) < z(β2) < z(βmax). This proves the first part of

Proposition 3.

Next, observe that Pr(D < zcentralβ) = E[G(zcentralβ)]. Because G(zβ) is an increasing

function of β for all z and because zcentral decreases as credit risk increases, it follows that, as

β ↓st, Pr(D < zcentralβ) decreases. �

Proof of Proposition 4.

As z → +∞, by the Monotone Convergence Theorem, S(z) → −∞. Therefore, there exists ẑ such

that for all z > ẑ, S(z) < 0. Hence, we can restrict the search for an optimal z to the interval

[0, ẑ]. Function S(·) is bounded from above on this interval and hence, achieves the maximum. The

maximum satisfies the first order conditions (10). �

Proof of Theorem 1.

Consider the first order condition (12) that determines optimal order quantity z∗. As π increases,

the right hand side of the expression (12) increases. Because left hand side of the expression (12)

is nondecreasing in z it follows that z∗ is decreasing in π.

From expression (11) for supplier’s profit, we see that for all z, S(z) is decreasing in π. It follows

that the optimal supplier’s profit S(z∗) is decreasing in π.

Finally, if the supplier charges wholesale price K∗ = e−r(1− π)sG(z∗π) then the retailer’s profit

Rπ(z) = e−r(1 − π)s
[
E min(D, z) − G(z∗π)z

]

is decreasing in π for all z. Hence, R∗ = R(z∗) is decreasing in π. �

Proof of Proposition 6.

If G(·) is concave (convex) then γ(·) is decreasing (increasing). Observe that
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K∗ − c

e−r(1 − π)s − K∗ = γ(z∗) and
e−r(1−π)s−K∗

e−r(1−π)s

e−r(1−π)s−c
e−r(1−π)s

=
1

1 + γ(z∗)

As π increases, z∗ decreases. Hence γ(z∗) increases (decreases) and the conclusion of Proposition 6

follows. �

Proof of Proposition 7.

Observe that, by the proposition hypothesis, it is not optimal for the retailer to order amounts

from the suppliers that add up to a quantity lower than D. Therefore, we restrict the search for

the optimal order quantities to z∗1 + z∗2 ≥ D and z∗i ≤ D, i = 1, 2. Using equation (17) we derive

the following expression for the retailer’s profit:

R(z1, z2) = (e−rsp01 − K1)z1 + (e−rsp10 − K2)z2 + p00D.

The three cases now follow easily:

If K1 ≤ e−rsp01 and K2 ≤ e−rsp10, then order quantities (D,D), maximize retailer’s profits.

If K1 ≤ e−rsp01 and K2 > e−rsp10, then the optimal order quantities are (D, 0).

If K1 > e−rsp01 and K2 ≤ e−rsp10, then the optimal order quantities are (0,D).

Suppose K1 > e−rsp01 and K2 > e−rsp10. Then the retailer would like to order as little as

possible from the suppliers subject to the constraint z1 + z2 ≥ D. Therefore, the retailer will order

D from one of the suppliers and 0 from the other unless she is indifferent between the two [which

occurs when K2 = K1 + e−rs(π1 − π2)]. �

Proof of Proposition 9.

From the first order conditions, (z1, 0) is the optimal retailer’s response if
∂R

∂z1

∣∣∣∣
z2=0

= 0 and
∂R

∂z2

∣∣∣∣
z2=0

≤ 0,
Or equivalently, 




e−rs(1 − π1)G(z1) = K1

e−rs
[
p10 + p00G(z1)

]
≤ K2.

Equivalently, e−rs(1 − π1)G(z1) = K1 and K2 ≥ p00

1−π1
K1 + e−rsp10. The proof for the remaining

cases is similar. �

Proof of Corollary 2.

Without loss of generality, assume that i = 1. Solution of the system (25) is unique. The conclusion

follows from an observation that system of equations (25) is equivalent to the system (23) when

K1 = (1−π1)
p00

[K2 − e−rsp01] and is equivalent to the system (24) when K1 = p00

1−π2
K2 + e−rsp10. �
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Proof of Proposition 11.

Because the equilibrium is symmetric, the equilibrium order quantity z1 = z2 = z > 0. Thus, we

consider the supplier’s profit function over the region where both order quantities are positive.

For supplier 1: maxL(K∗)≤K1≤R(K∗)(K1 − c)z1(K1,K
∗),

where z1(K1,K
∗) satisfies the system of equations (25), R(K∗) = p00

1−π2
K∗ + e−rsp10, and L(K∗) =

1−π1
p00

(K∗ − e−rsp01). For this optimization problem we can change the variable from K1 to z1, z2,

as long as (25) is satisfied. Then the optimization problem becomes:

max
z1,z2:L(K∗)≤K1(z1,z2)≤R(K∗)

{
e−rs

[
p01G(z1) + p00G(z1 + z2)

]
− c

}
z1,

subject to e−rs
[
p10G(z2) + p00G(z1 + z2)

]
= K∗.

Taking the Lagrangian:

max
z1,z2:L(K∗)≤K1(z1,z2)≤R(K∗)

{
e−rs

[
p01G(z1) + p00G(z1 + z2)

]
− c

}
z1 −

− λ
{
e−rs

[
p10G(z2) + p00G(z1 + z2)

]
− K∗} ,

the first order necessary conditions for an interior maximum point are
e−rs

[
p01G(z1) + p00G(z1 + z2)

]
− c − e−rs [p01g(z1) + p00g(z1 + z2)] z1 +

+ λe−rsp00g(z1 + z2) = 0,

− e−rsp00g(z1 + z2)z1 + λe−rs [p10g(z2) + p00g(z1 + z2)] = 0,

e−rs
[
p10G(z2) + p00G(z1 + z2)

]
= K∗.

After eliminating λ from the first two equations we obtain:[
p01G(z1) + p00G(z1 + z2)

]
− [p01g(z1) + p00g(z1 + z2)] z1 +

+
p2
00g

2(z1 + z2)z1

p10g(z2) + p00g(z1 + z2)
=

c

e−rs
, and

e−rs
[
p10G(z2) + p00G(z1 + z2)

]
= K∗.

For a symmetric equilibrium, z1 = z2 = z. Hence, the equilibrium order quantity must satisfy

p01G(z)[1 − h(z)] + p00G(2z)
[
1 − 1

2
h(2z)

]
+

p2
00g

2(2z)z
p10g(z) + p00g(2z)

=
c

e−rs
,

where h(z) = z g(z)

G(z)
is the generalized failure rate function. The symmetric equilibrium order

quantity is related to the symmetric equilibrium wholesale prices by

e−rs
[
p10G(z) + p00G(2z)

]
= K∗. �

Proof of Lemma 1.

It follows from the solution of the one-supplier model (Proposition 5) and from K̂ < Kmon, that

function Sall is increasing over its domain achieving maximum at the right boundary. From Corol-

lary 2 it follows that the supplier’s profit function is continuous. Therefore the maximum of Sshare

is at least as large as the value of Sall at the right boundary of its domain. �
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